Dr. Fatemrh Rajaei | Team Building and Team Management | Best Researcher Award

Dr. Fatemrh Rajaei | Team Building and Team Management | Best Researcher Award

university of zanjan, Iran

Author Profile

Scopus 

🌱 Early Academic Pursuits

Dr. Fatemeh Rajaei’s journey into the environmental sciences began with a deep-rooted interest in nature, ecology, and sustainability. Her academic foundation was laid at Tarbiat Modares University (TMU) in Tehran, one of Iran’s premier research institutions. She first earned her Master of Science degree in Environmental Sciences in 2006. Her thesis, titled “Ecological Risk Assessment of Organochlorine Pesticides (OCPs) and Polychlorinated Biphenyls (PCBs) Residual in Bird”, reflected a strong commitment to understanding the complex and often hidden threats posed by persistent organic pollutants in natural ecosystems. This early research showcased her emerging expertise in ecotoxicology and risk assessment, which would go on to form a cornerstone of her academic and professional work.

Dr. Rajaei continued her studies at TMU, completing her Ph.D. in Environmental Sciences in 2011. Her doctoral research, “Simulation of Management Scenarios of Land Use and Landscape Metrics Changes for Surface Water Quality Improvement in Tajan Watershed,” marked a significant leap into integrated environmental modeling. Through advanced simulation techniques and spatial analysis, she examined how land use and landscape changes influence water quality, laying the groundwork for her lifelong pursuit of ecosystem protection and sustainable resource management.

🧪 Professional Endeavors

After completing her Ph.D., Dr. Rajaei joined the University of Zanjan, where she currently serves as an Assistant Professor in the Department of Environmental Science, Faculty of Science. In this role, she has become a pivotal figure in advancing environmental education and research in Iran. Her teaching and mentorship span several core areas, including ecotoxicology, watershed-scale water resource modeling, geographic information systems (GIS), remote sensing (RS), and environmental impact assessment (EIA).

Her research work is housed within simulation laboratories and field studies, bridging computational modeling with real-world ecological phenomena. She contributes substantially to both undergraduate and graduate training, equipping the next generation of environmental scientists with the tools and frameworks necessary to confront complex environmental challenges.

🔬 Contributions and Research Focus

Dr. Rajaei’s research encompasses a diverse yet interconnected set of environmental themes. She is particularly known for her work in ecotoxicology, focusing on the effects of contaminants such as pesticides and industrial pollutants on ecosystems. Her expertise in watershed-scale water resource modeling enables the simulation of land use scenarios and hydrological impacts, providing essential insight for policy planning and conservation.

Another vital aspect of her work lies in climate change adaptation and landscape ecology. She has been involved in modeling land use changes, optimizing spatial patterns for ecological sustainability, and assessing ecosystem services to ensure environmental balance in development projects. Her application of multi-criteria decision support systems (MCE-DSS) has supported environmentally sound decision-making in complex planning contexts.

Furthermore, she actively utilizes GIS and remote sensing tools to analyze and visualize environmental data, empowering her research with precision and scalability. Her contributions to Environmental Impact Assessments (EIA) of various plans, policies, and infrastructure projects underscore her commitment to sustainable development.

🏆 Accolades and Recognition

Throughout her career, Dr. Rajaei has earned respect and admiration within academic and governmental circles for her pioneering work. While her awards may not always be publicly listed, her impact is reflected in her appointments, student mentorship, and collaborative research roles. Her faculty profile at the University of Zanjan showcases her continued involvement in interdisciplinary projects that address pressing environmental issues in Iran and beyond.

Her leadership in environmental science education has not gone unnoticed, and she frequently contributes to scholarly discussions, seminars, and national forums focused on water management, biodiversity, and sustainable land use.

🌍 Impact and Influence

Dr. Fatemeh Rajaei’s influence extends beyond academia. Her applied research supports local and regional environmental policy-making, particularly concerning water resource protection, land development, and ecosystem health. Her modeling work informs decisions related to land suitability and environmental sustainability, especially in rural and semi-arid regions that are vulnerable to the dual threats of climate change and land degradation.

Through her academic contributions, Dr. Rajaei inspires students, professionals, and community leaders to approach environmental problems with scientific rigor and holistic thinking. Her interdisciplinary skill set makes her a vital voice in Iran’s environmental planning and education ecosystem.

🌟 Legacy and Future Contributions

Looking forward, Dr. Rajaei is poised to leave a lasting legacy in the field of environmental science. Her expertise in simulation modeling, landscape optimization, and decision-support systems offers scalable solutions to global sustainability challenges. As climate change accelerates and land resources become increasingly contested, her work in modeling and evaluating ecosystem services will be crucial to shaping adaptive, forward-looking policies.

She is also expected to continue mentoring future environmental leaders, shaping academic discourse, and contributing to international collaborations that bridge science, policy, and sustainability. Her legacy will be marked by her dedication to scientific excellence, ecological stewardship, and a deep commitment to improving the quality of life through environmental responsibility.

📝Notable Publications

Trace elements in barnacle, egg contents, and egg shells of the critically endangered hawksbill turtle (Eretmochelys imbricata) from the Persian Gulf, Iran

Author(s): [Author names are not specified in your message; please provide them if known]
Journal: Environmental Research
Year: 2025

Mr. puya zhao | Team Building and Team Management | Excellence in Research

Mr. puya zhao | Team Building and Team Management | Excellence in Research

AsymBio, China

Author Profile

Scopus

🌱 Early Academic Pursuits

Puya Zhao embarked on his academic journey at Henan Agricultural University, where he earned his bachelor’s degree in 2008. His passion for biotechnology and life sciences led him to pursue dual master’s degrees at two prestigious institutions—the Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, and Tianjin University of Science and Technology—from 2008 to 2011. These formative years provided him with a robust foundation in bioprocessing and industrial biotechnology.

🚀 Professional Endeavors

Puya Zhao’s career is marked by significant achievements in the biopharmaceutical industry. Since July 2022, he has served as the Downstream Process Development Director at Shanghai AsymBio, where he has overseen the successful completion of over 30 Investigational New Drug (IND) projects, including monoclonal antibody, bispecific antibody, nanobody, Fc-fusion proteins, and other recombinant proteins. His leadership extends to managing a purification team of 15-20 members, where he is responsible for strategic design, experimental execution, report drafting, and team management.

Before his tenure at Shanghai AsymBio, Puya Zhao held the position of Associate Director of the Biosafety Testing (Suzhou) Department at WuXi Biologics from 2020 to 2022. Here, he specialized in viral clearance studies, leading a team of 15-23 members and developing a comprehensive database for viral clearance, which has become an essential resource for downstream process development.

🔬 Contributions and Research Focus

Puya Zhao has made substantial contributions to biopharmaceutical process development. His work includes the development of purification processes for various biologics, the translation of key texts on biopharmaceutical manufacturing, and active participation in the ICH Q5A (R2) domestic expert working group. He has also led initiatives in process scale-up, technology transfer, and pilot plant management, ensuring compliance with Good Manufacturing Practice (GMP) standards.

His research is well-recognized in the scientific community, with notable publications in peer-reviewed journals. His recent SCI papers include studies on the application of an integrated full-membrane platform for antibody purification and a non-affinity platform for processing knob-into-hole bispecific antibodies, both published in Bioresources and Bioprocessing in 2024.

🏆 Accolades and Recognition

Puya Zhao’s expertise is further demonstrated by his role in the ICH Q5A (R2) domestic expert working group, where he has participated in the review and finalization of regulatory documents and maintained active communication with regulatory agencies. His innovative approach is reflected in his intellectual property portfolio, with six patents submitted, two of which have been officially filed.

🌐 Impact and Influence

Puya Zhao’s leadership in downstream process development has significantly impacted the biopharmaceutical industry, particularly in the purification and safety testing of biologics. His contributions to process optimization, viral clearance, and scale-up strategies have set benchmarks for best practices in the field. His expertise is not only recognized within his organization but also in the broader biopharmaceutical sector.

🌟 Legacy and Future Contributions

Looking forward, Puya Zhao is poised to continue his contributions to biopharmaceutical innovation. His commitment to research, process optimization, and regulatory excellence positions him as a key figure in the development of safe and effective biologics. As he continues to lead teams and drive scientific advancements, his impact on the industry is set to grow further.”)}

📝Notable Publications

Application of the Design of Experiment to Characterize Depth Filtration for Bispecific Antibody Clarification

Authors: Pan, Y., Li, M., Hong, H., Gao, K., Zhao, P.

Journal: Chemical Engineering Research and Design

Year: 2025

Dr. Youming Wang | Team Building and Team Management | Best Researcher Award

Dr. Youming Wang | Team Building and Team Management | Best Researcher Award

Xi’an University of Posts and Telecommunications, China

Author Profile

Scopus

🎓 Early Academic Pursuits

Youming Wang’s journey in academia began with a strong foundation in mechanical engineering, earning his Master of Science degree from Xi’an University of Technology in 2006. His early academic endeavors reflected a growing curiosity about mechanical systems, particularly how they behave under stress, wear, and fluctuating environmental conditions. Driven by a desire to delve deeper into the intricacies of engineering systems, Wang continued his academic journey at Xi’an Jiaotong University, one of China’s most prestigious institutions, where he obtained his Ph.D. in Mechanical Engineering in 2010.

During his formative academic years, Wang developed a keen interest in the dynamic behavior of mechanical structures. His research during this period focused on laying a solid theoretical foundation in fault detection, signal processing, and vibration analysis—areas that would later define the trajectory of his career. His doctoral studies equipped him not only with rigorous technical expertise but also with a vision to address real-world mechanical challenges using cutting-edge engineering principles.

🛠️ Professional Endeavors

Following the completion of his Ph.D., Professor Youming Wang began his academic and research career at the Xi’an University of Posts and Telecommunications, where he currently serves as a full professor. In this role, he has been instrumental in shaping both the academic curriculum and research direction within the department of mechanical and electrical engineering.

His professional life is marked by a balance of scholarly excellence and practical engineering application. At the university, Wang has mentored numerous graduate students and led several projects, bridging the gap between theoretical research and industry needs. His role also includes collaboration with industrial partners to apply research in fault detection and vibration control to complex engineering systems in telecommunications and manufacturing sectors.

🔬 Contributions and Research Focus

Professor Wang’s research is centered on fault diagnosis, vibration control, and structural health management—fields that are crucial to the reliability and safety of modern mechanical systems. His work involves the development of diagnostic algorithms and predictive maintenance tools that allow engineers to detect faults in complex machinery before catastrophic failures occur.

By integrating advanced signal processing techniques, artificial intelligence, and sensor-based monitoring, Wang has contributed to the evolution of smart maintenance systems. These systems are especially important in industries where downtime due to mechanical failure can lead to significant financial losses or safety risks. His research has helped establish frameworks for real-time structural monitoring, ensuring early detection of issues in bridges, turbines, and high-precision equipment.

🏅 Accolades and Recognition

Over the years, Professor Wang has received widespread recognition for his contributions to mechanical engineering and applied diagnostics. Notably, he is a Fellow of the Chinese Communications Society, reflecting his interdisciplinary engagement with engineering and communications technologies. He is also a Director of the Fault Diagnosis Branch of the Chinese Society of Vibration Engineering, a role that underscores his leadership in advancing the field at the national level.

These distinctions highlight Wang’s professional esteem and validate the significance of his contributions to both academia and industry. His leadership roles also position him as a key figure in setting national research agendas and fostering innovation in structural health technologies.

🌏 Impact and Influence

The impact of Professor Wang’s work extends far beyond the university classroom or laboratory. His research has direct applications in several high-stakes industries, including transportation, energy, aerospace, and civil infrastructure. By enabling early fault detection and precision control, his methods help reduce maintenance costs, enhance operational safety, and extend the life span of critical assets.

Wang’s publications have influenced scholars and practitioners across the globe, contributing to a growing body of literature that blends traditional mechanical engineering with emerging digital tools such as machine learning and IoT-enabled diagnostics. His role in mentoring young researchers has also ensured the continuity and evolution of research in this vital area.

🌟 Legacy and Future Contributions

As Professor Youming Wang continues to advance in his career, his focus remains firmly on innovation and interdisciplinary integration. With the growing emphasis on smart cities, cyber-physical systems, and sustainable infrastructure, his expertise in fault diagnosis and structural health monitoring positions him to make lasting contributions to these emerging areas.

Looking ahead, Wang is likely to expand his work into AI-driven fault prediction systems, collaborative robotic diagnostics, and the development of integrated health management frameworks for next-generation infrastructure. His blend of academic rigor, technical proficiency, and visionary leadership ensures that his legacy will be marked by continued influence on both the engineering community and society at large.

An extended iterative filtering and composite multiscale fractional-order Boltzmann-Shannon interaction entropy for rolling bearing fault diagnosis

Author(s): Y. Wang (Youming), X. Wang (Xianzhi), G. Chen (Gaige)
Journal: Applied Acoustics
Year: 2025

 Res-TCEANet: An expansive attention mechanism with positional correspondence based on semi-supervised temporal convolutional network for RUL estimation

Author(s): Y. Wang (Youming), Y. Huang (Yirun)
Journal: Measurement: Journal of the International Measurement Confederation
Year: 2025

A fault diagnosis method of rolling bearings based on masking differential iterative filtering and Euclidean mixed entropy

Author(s): Y. Wang (Youming), X. Yang (Xing), S. Jiao (Shiting)
Journal: Measurement Science and Technology
Year: 2025

 A Multilevel Attitude-Aware Denoising Network for Bearing Fault Diagnosis

Author(s): Y. Wang (Youming), Y. Kang (Yezi), Y. Huang (Yirun)
Journal: IEEE Transactions on Industrial Informatics
Year: 2025

 A Fault Diagnosis Model Based on IFSS-CK-Means Algorithm for the Bolted Structure

Author(s): X. Yang (Xingdong), Y. Wang (Youming), X. Gao (Xiang), J. Tan (Jiyong)
Journal: Conference Paper
Year: (Not specified, assumed 2025 based on others)