Dr. MATTHEW OGWIJI | Team Building and Team Management | Best Researcher Award

Dr. MATTHEW OGWIJI | Team Building and Team Management | Best Researcher Award

MODIBBO ADAMA UNIVERSITY YOLA, Nigeria

Profile 

Scopus

📝 Summary

Dr. Matthew Ogwiji is a dedicated academic and researcher specializing in Veterinary Protozoology and Parasitology at Modibbo Adama University, Yola. His research primarily focuses on parasitic diseases in poultry, particularly the effects of dietary supplements like probiotics, prebiotics, and synbiotics on broiler chickens infected with Eimeria tenella. He has authored several peer-reviewed publications on parasitology, antimicrobial resistance (AMR), and alternative therapies for managing parasitic infections.

🎓 Education

  • Master of Science (MSc) in Veterinary Protozoology
    Ahmadu Bello University, Zaria, Kaduna State, Nigeria | 2021
    Thesis: Effect of Probiotic, Prebiotic, and Synbiotic Supplementation on Performance, Gut Health, and Immune Response of Broiler Chickens Challenged with Eimeria tenella.
    Supervisor: Professor I. D. Jatau
  • Bachelor of Science (BSc) in Veterinary Medicine
    University of Maiduguri, Maiduguri, Nigeria | 2014
    Thesis: Comparative Efficacy of Commonly Used Trypanocidal Drugs on Trypanosoma evansi.
    Supervisor: Professor A. W. Mbaya

💼 Professional Experience

  • Lecturer / Research Supervisor
    Modibbo Adama University, Yola, Nigeria | 2022 – Present
    Focused on research involving probiotic, prebiotic, and synbiotic supplementation in poultry, Dr. Ogwiji has supervised projects analyzing the immune response and parasitological parameters in chickens infected with cecal coccidiosis.
  • Research Assistant
    Ahmadu Bello University, Zaria, Nigeria | 2018 – 2021
    Investigated the performance and parasitic infections in poultry with a particular emphasis on developing alternative therapies to combat antimicrobial resistance (AMR).

🔬 Research Interests

Dr. Ogwiji’s research revolves around:

  • The application of probiotics, prebiotics, and synbiotics in animal health
  • Parasitology, specifically in poultry diseases such as Eimeria tenella
  • Exploring alternative treatments for parasitic infections to combat antimicrobial resistance
  • Immune modulation and gut health in broiler chickens

Notable Publications

Effect of prebiotic, probiotic, and synbiotic products on oxidative status, performance, and parasitological parameters of broiler chickens induced with cecal coccidiosis

Authors: Ogwiji, M., Jatau, I.D., Natala, A.J., et al.

Journal: Tropical Animal Health and Production

Year: 2022

Comparative effect of dietary supplements on the performance and severity of experimental Eimeria tenella infection in broiler chickens

Authors: Ogwiji, M., Jatau, I.D., Natala, J.A., Kyari, S., Gasaliyu, K.A.

Journal: Tropical Animal Health and Production

Year: 2022

In vitro and in vivo anthelmintic effects of Sterospermum kunthianum (Cham-Holl) leaf extract against Ascaridia galli in experimentally infected broiler chickens

Authors: Stephen, K., Ajanusi, O.J., Suleiman, M.M., Orakpoghenor, O., Ogwiji, M.

Journal: Journal of Parasitic Diseases

Year: 2022

In-vivo and in-vitro activities of medicinal plants on ecto, endo, and haemoparasitic infections: A review

Authors: Mbaya, A.W., Ogwiji, M.

Journal: Current Clinical Pharmacology

Year: 2014

Effects of host demography, season, and rainfall on the prevalence and parasitic load of gastrointestinal parasites of free-living elephants (Loxodonta africana) of the Chad Basin National Park, Nigeria

Authors: Mbaya, A.W., Ogwiji, M., Kumshe, H.A.

Journal: Pakistan Journal of Biological Sciences

Year: 2013

Dr. Yangyang Xin | Team Building and Team Management | Best Researcher Award

Dr. Yangyang Xin | Team Building and Team Management | Best Researcher Award 

Northwestern Polytechnical University, China 

Profile 

Orcid 

🎓 Early Academic Pursuits

Yangyang Xin’s academic journey began at Northwestern Polytechnical University, where he pursued a deep interest in chemistry and chemical engineering. His early dedication to the field was evident as he consistently excelled in his studies, securing the prestigious first-class academic scholarship and being honored as an outstanding graduate student. These achievements laid the foundation for his future research endeavors and set the stage for his commitment to advancing the field of chemical engineering.

🧪 Professional Endeavors and Research Focus

Currently a PhD candidate at the School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Yangyang Xin is deeply involved in cutting-edge research that focuses on gas adsorption in porous liquids and epoxy resin composites. His work is at the forefront of developing innovative solutions to some of the most pressing challenges in chemical engineering, particularly in the area of CO2 capture.

One of his notable research projects includes the development of a novel “pore-carrier transfer” strategy for the preparation of porous liquids, which has shown significant promise for efficient CO2 capture. This strategy, which was first introduced by Yangyang, has the potential to revolutionize the field by enabling the creation of porous platforms based on UiO-66-NH2 and MXene, facilitating the effective utilization of sorption sites. This groundbreaking approach offers a novel method for developing porous liquids (PLs) that can be applied to various gas sorption applications.

🏆 Accolades and Recognition

Throughout his academic career, Yangyang Xin has received several accolades that reflect his commitment to excellence in research. His work has been published in top-tier scientific journals, including the Chemical Engineering Journal, Nano Research, and the New Journal of Chemistry. These publications highlight his significant contributions to the field and underscore his role as an emerging leader in chemical engineering research.

Yangyang’s most recent publication in the Chemical Engineering Journal (2024) presents his pioneering “pore-carrier transfer” strategy, which has garnered attention for its potential to enhance CO2 capture efficiency. His other publications also demonstrate a consistent focus on developing low-viscosity porous liquids and post-synthetic modification techniques to improve gas adsorption properties.

🌍 Impact and Influence

Yangyang Xin’s research is not just academically rigorous; it has profound implications for addressing global environmental challenges. His focus on CO2 capture aligns with the urgent need to mitigate climate change by reducing greenhouse gas emissions. The innovative strategies he has developed for constructing porous liquids are likely to influence future research in the field and could lead to practical applications in industrial processes aimed at reducing carbon footprints.

Furthermore, Yangyang’s work contributes to the broader scientific community by providing new methodologies that other researchers can build upon. His “like dissolves like” approach to constructing low-viscosity porous liquids, for instance, is a generalizable strategy that can be applied to various materials, thereby expanding the scope of research in this area.

👥 Legacy and Future Contributions

Looking ahead, Yangyang Xin is poised to continue making significant contributions to the field of chemical engineering. His research on porous liquids and CO2 capture is just the beginning of what promises to be a long and impactful career. As he progresses in his academic and professional journey, Yangyang aims to further explore the potential of porous materials and two-dimensional materials in gas sorption applications. His goal is to develop more efficient and sustainable methods for capturing greenhouse gases, thereby contributing to global efforts to combat climate change.

In addition to his research, Yangyang is committed to mentoring the next generation of scientists. He recognizes the importance of sharing knowledge and fostering a collaborative research environment. His future endeavors will likely include collaborative projects with other researchers, as well as contributions to academic and professional communities through conferences, publications, and teaching.

🌟 Highlighting a Bright Future

Yangyang Xin’s work in chemical engineering is marked by innovation, dedication, and a clear vision for the future. His early achievements and ongoing research have already begun to make a significant impact on the field. As he continues to explore new frontiers in gas adsorption and porous liquids, Yangyang is set to leave a lasting legacy that will benefit both the scientific community and the world at large.

With his sights set on solving some of the most challenging problems in environmental science and engineering, Yangyang Xin is undoubtedly a researcher to watch. His contributions not only advance the understanding of chemical processes but also offer practical solutions that can help create a more sustainable future.

Publications 

Latent heat type nanofluid based on MXene and MoS2 modified hierarchical structured phase change nanocapsules for sustainable and efficient light-heat conversion

Authors: Not provided

Journal: Chemical Engineering Journal

Year: 2024

Insight into the mechanical properties and thermal expansion behavior of epoxy nanocomposites reinforced with multi‐walled carbon nanotube solvent‐free nanofluids

Authors: Not provided

Journal: Polymer Composites

Year: 2024

Robust and stretchable Ti3C2Tx MXene/PEI conductive composite dual-network hydrogels for ultrasensitive strain sensing

Authors: Not provided

Journal: Composites Part A: Applied Science and Manufacturing

Year: 2024

A transparent and robust ionogel prepared via phase separation for sensitive strain sensing

Authors: Not provided

Journal: Journal of Materials Chemistry

Year: 2024

Preparation of tough and stiff ionogels via phase separation

Authors: Not provided

Journal: Materials Horizons

Year: 2024

Dr. Haiyan Jiang | Team Building and Team Management | Best Researcher Award

Dr. Haiyan jiang ,Team Building and Team Management, Best Researcher Award

Department of Intelligent Equipment, Shandong University of Science & Technology, Tai-an, China

Profile 

Scopus 

Orcid 

📚Early Academic Pursuits 

Haiyan Jiang’s journey in the fields of intelligent detection technology, robot technology, and pattern recognition began with a strong foundation in academics. She pursued rigorous studies, acquiring a deep understanding of cutting-edge theories and technologies. Her early academic career was marked by a commitment to mastering the principles of experiment design, data collection, and analysis. This academic rigor laid the groundwork for her subsequent research and teaching endeavors.

🛠️Professional Endeavors 

As an educator and researcher, Haiyan Jiang has significantly contributed to both national and provincial scientific research projects. She has been involved in various educational and teaching research initiatives, demonstrating a strong dedication to advancing knowledge in her field. Her professional journey is characterized by leadership in editing and compiling textbooks and monographs, which serve as valuable resources for students and fellow researchers alike.

Haiyan Jiang has a wealth of experience in applying innovative thinking to solve complex problems. Her ability to design experiments and draw meaningful conclusions has been a cornerstone of her teaching and research. She has published numerous papers in high-impact journals, highlighting her expertise and contributions to the scientific community.

🔍Contributions and Research Focus 

Haiyan Jiang’s research has primarily focused on intelligent detection technology, robot technology, and pattern recognition. Her work has involved the development and application of advanced algorithms and models to solve practical problems in these areas. Some of her notable research publications include:

  1. Coal-gangue recognition via multi-branch convolutional neural network based on MFCC in noisy environment – Published in Scientific Reports, 2023, this paper explores the use of multi-branch convolutional neural networks for coal-gangue recognition in noisy environments.
  2. Adaptive multiswarm particle swarm optimization for tuning parameter optimization of three-element dynamic vibration absorber – This study, published in Mechanical Sciences, focuses on optimizing parameters using adaptive multiswarm particle swarm optimization.
  3. State Diagnosis of Elevator Control Transformer over Vibration Signal Based on MEA-BP Neural Network – Published in Shock and Vibration, 2021, this research addresses state diagnosis using MEA-BP neural networks.
  4. Rule-based expert system to assess caving output ratio in top coal caving – Featured in PLOS ONE, 2020, this paper presents a rule-based expert system for assessing caving output ratios.
  5. Feature selection based on FDA and F-score for multi-class classification – Published in Expert Systems with Applications, 2017, this study focuses on feature selection techniques for multi-class classification.
  6. An automatic decision approach to coal–rock recognition in top coal caving based on MF-Score – This research, published in Pattern Analysis & Applications, 2017, proposes an automatic decision approach for coal-rock recognition.

🏆Accolades and Recognition 

Haiyan Jiang’s dedication and achievements have not gone unnoticed. Her work has been recognized with various awards, including a notable mention for the “Best Researcher Award” for her article on the extreme obstacle-crossing performance and multi-objective optimization of tracked mobile robots. This recognition is a testament to her relentless efforts and contributions to her field.

🌍Impact and Influence 

Throughout her career, Haiyan Jiang has made a significant impact on the scientific community and the field of intelligent detection technology. Her research has advanced the understanding and application of complex algorithms and models, providing solutions to real-world problems. Her publications have been widely cited, influencing further research and development in related areas.

🌟Legacy and Future Contributions 

Looking forward, Haiyan Jiang aims to continue her in-depth exploration in robot motion control and path planning. Her future research will likely contribute to the development of more sophisticated and efficient robotic systems. She is committed to pushing the boundaries of knowledge and technology in her field, ensuring her legacy as a pioneer in intelligent detection and robotics.

Haiyan Jiang’s career is a testament to her passion for research, her innovative approach to problem-solving, and her dedication to advancing knowledge. Her contributions have left a lasting mark on her field, and her future endeavors promise to further elevate her influence and impact.

Publications 

Coal-gangue recognition via multi-branch convolutional neural network based on MFCC in noisy environment

    • Authors: Haiyan Jiang, Dashuai Zong, Qingjun Song, ZhiJiang Liu, Jing Tian
    • Journal: Scientific Reports
    • Year: 2023

Semantic Segmentation of In-Vehicle Point Cloud With Improved RangeNet++ Loss Function

    • Authors: Jia Zhang, Haiyan Jiang, Huizhi Shao, Xiaofeng Wang, Dashuai Zong
    • Journal: IEEE Access
    • Year: 2023

Longitudinal Vibration Characteristics of Deep Sea Mining Pipe Based on ABAQUS | 基于 ABAQUS 的深海采矿扬矿管纵向振动性能

    • Authors: Qinghui Song, Linjing Xiao, Haiyan Jiang, Xun Liu, Fan Yan
    • Journal: Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University
    • Year: 2022

Adaptive multiswarm particle swarm optimization for tuning the parameter optimization of a three-element dynamic vibration absorber

    • Authors: Qinghui Song, Linjing Xiao, Qingjun Song, Haiyan Jiang, Xun Liu
    • Journal: Mechanical Sciences
    • Year: 2022

Dynamic behavior of lifting pipe with equivalent model under mining vessel heave motion

    • Authors: Qinghui Song, Haiyan Jiang, Qingjun Song, Linjing Xiao, Fan Yan
    • Journal: Journal of Mechanical Science and Technology
    • Year: 2022

Dr. Xin Li | Team Building and Team Management | Best Researcher Award

Dr. Xin Li, Team Building and Team Management,  Best Researcher Award

Chongqing University State Key Laboratory of Power Transmission Equipment and System Security and New Technology, China

🔗 Profile

Orcid 

Early Academic Pursuits 🎓

Xin Li’s academic journey began with a solid foundation in electrical engineering. After earning his Bachelor of Science degree in Electrical Engineering from Shandong University of Science and Technology in 2022, Xin Li pursued advanced studies at Chongqing University. Currently working towards his PhD with the College of Electrical Engineering, his early academic experiences laid the groundwork for a deep commitment to innovation and research in electrical systems. His initial studies not only demonstrated his grasp of fundamental concepts but also highlighted his passion for addressing complex issues in power transmission.

Professional Endeavors 🛠️

Xin Li’s professional journey is marked by a keen focus on the field of electrical engineering, specifically the online monitoring and fault diagnosis of electrical equipment. At Chongqing University’s State Key Laboratory of Power Transmission Equipment and System Security and New Technology, he has been actively involved in groundbreaking research that addresses critical challenges in high-voltage direct current (HVDC) transmission lines. His role involves extensive simulation and analysis, contributing significantly to the understanding and resolution of overheating issues in extra-high voltage systems.

Contributions and Research Focus 🔬

Xin Li’s research primarily addresses the lack of systematic analysis in connection fittings for extra-high voltage direct current (HVDC) transmission lines. His work has unveiled crucial insights into the causes and impacts of overheating defects. Xin Li proposed a novel model that not only analyzes problems related to ±800 kV HVDC overhead transmission lines but also extends to ultra-high voltage systems like ±500 kV. This model provides a comprehensive troubleshooting plan for defect issues, offering valuable guidance for improving fault diagnosis and maintenance strategies in power transmission.

Accolades and Recognition 🏆

Despite his relatively early career, Xin Li’s contributions have garnered recognition within the academic and professional communities. His innovative approach to HVDC transmission line issues has been acknowledged through various channels, reflecting the impact of his research. While specific accolades are not detailed, his ongoing work and the importance of his findings suggest a trajectory toward significant industry and academic recognition.

Impact and Influence 🌍

Xin Li’s research has a profound impact on the field of electrical engineering, particularly in the area of power transmission. By addressing critical gaps in the analysis and troubleshooting of HVDC transmission lines, his work enhances the reliability and safety of electrical power systems. The model he developed is expected to influence industry practices and contribute to more efficient fault diagnosis and maintenance procedures, thereby improving the overall stability and performance of power transmission networks.

Legacy and Future Contributions 🚀

Looking forward, Xin Li aims to build on his current research to explore further innovations in power transmission technology. His focus will continue to be on enhancing the reliability of HVDC systems and expanding the applicability of his models to other high-voltage contexts. By addressing unresolved issues in electrical engineering, Xin Li aspires to make enduring contributions that will shape the future of power transmission technology. His commitment to advancing the field reflects a dedication to leaving a lasting legacy of innovation and excellence.

📚 Publications

Analysis of Heating Defects in Extension Rods of Extra-High Voltage Direct Current Overhead Transmission Lines

    • Authors: Li, X.; Du, L.; Hu, Y.; Xie, H.; Luo, L.
    • Journal: Electric Power Systems Research
    • Year: 2024
Harmonic Voltage Measurement Based on Capacitive Equipment Dielectric Equivalent Model and Responding Current
    • Authors: Lin Du; Hui Feng; Xin Li; Xianjun Shao; Zhi Yang
    • Journal: Measurement Science and Technology
    • Year: 2024