Dr. George STANCIU | Materials Science & Laser Materials | Best Researcher Award

Dr. George STANCIU | Materials Science & Laser Materials | Best Researcher Award

National Institute for Laser, Plasma and Radiation Physics, Romania

Author Profile

Scopus 

🎓 Early Academic Pursuits

Dr. George Stanciu was born on July 26, 1980, in Bucharest, Romania, and from an early age demonstrated a keen interest in the sciences, particularly in chemistry and materials. His academic path began at the prestigious University Politehnica of Bucharest, where he enrolled in the Faculty of Applied Chemistry and Materials Science. Over the course of five rigorous years (2002–2007), he developed a solid foundation in chemical engineering, culminating in the attainment of his Engineering Diploma. Eager to advance his knowledge and practical competencies, he continued his education with a Master’s degree in Composite Materials at the same institution between 2007 and 2009. During this period, he gained significant insight into the synthesis, characterization, and application of advanced materials—interests that would form the core of his future research.

Dr. Stanciu’s commitment to scientific exploration led him to doctoral studies from 2009 to 2012, where he focused on micro- and nanostructured perovskite-type materials—a challenging and highly impactful area of chemical engineering with far-reaching applications in optics, electronics, and energy storage. His PhD journey exemplified a fusion of theoretical depth and experimental acumen, laying the groundwork for a career in advanced materials science. 🧪📘

🧑‍🔬 Professional Endeavors

Following the successful completion of his PhD, Dr. Stanciu embarked on a progressive research career at Romania’s esteemed National Institute for Laser, Plasma and Radiation Physics (INFLPR). He joined the Laboratory of Solid-State Quantum Electronics, where he held multiple positions of increasing responsibility. From 2012 to 2013, he served as a Scientific Researcher Assistant, rapidly advancing to Scientific Researcher (2014–2020), and eventually achieving the title of Senior Researcher (CS III) in July 2020.

Parallel to his early research engagements, he gained industry experience as a Chemical Engineer at S.C. CEPROCIM S.A. between 2007 and 2009. This role in the Department of Binder Research Materials Projects honed his skills in applied chemical technologies, adding a practical, solutions-oriented perspective to his primarily academic background. This rare combination of industrial and academic experience has made Dr. Stanciu a versatile and insightful researcher. 🧑‍🏭🔬

A notable milestone in his postdoctoral career was his involvement in a prestigious research scholarship under the supervision of Professor Dr. Ecaterina Andronescu at the University Politehnica of Bucharest. His work focused on the “SrxBa1-xNb2O6 doped system,” supported by the European Social Fund (POS DRU), marking his active engagement with European-level scientific initiatives. 📚🌍

🔬 Contributions and Research Focus

Dr. Stanciu’s scientific contributions reflect a focused and evolving engagement with crystal growth technology, transparent polycrystalline ceramics, and non-linear optics. His expertise in X-ray diffraction (XRD) for structural analysis underscores his dedication to uncovering the fundamental properties of materials at the atomic and molecular scale.

Among his primary research interests is the technology of transparent ceramics, a field that bridges the domains of material science and optics. These ceramics have critical applications in lasers, biomedical devices, and defense technologies. Furthermore, his work in frequency conversion and non-linear optical materials places him at the intersection of photonics and advanced material engineering, supporting global advancements in high-efficiency light generation and signal processing. 🔍🧿

His academic output is remarkable: 34 peer-reviewed journal articles, 85 presentations at international conferences, and contributions to 2 proceedings volumes, reflecting both his commitment to scientific communication and the relevance of his research to global scientific communities. His consistent presence in international forums signals a researcher deeply engaged in the advancement and dissemination of knowledge. 🌐📊

🏅 Accolades and Recognition

Though his CV does not list formal awards, Dr. Stanciu’s trajectory within INFLPR and his rapid ascent to senior researcher status are clear indicators of his esteem within the Romanian scientific community. Being entrusted with a postdoctoral research project funded by the European Social Fund also demonstrates recognition at the institutional and continental level. His work under Professor Andronescu, one of Romania’s most respected scientists, further underscores the trust placed in his abilities and potential. 🏆👨‍🎓

🌍 Impact and Influence

Dr. Stanciu’s work has significant implications for the future of laser and photonic technologies, where precision materials play a crucial role in performance and innovation. His research into perovskite-type structures aligns with global priorities in energy, environmental sustainability, and next-generation electronics. By developing novel materials with finely tuned optical and structural properties, his contributions support advances in everything from clean energy solutions to medical imaging technologies.

Moreover, his involvement with INFLPR—a flagship research institute in Romania—places him in a strategic position to mentor young scientists, collaborate on multidisciplinary projects, and influence policy and funding directions within the national research ecosystem. 🌟🧭

🔮 Legacy and Future Contributions

Looking ahead, Dr. George Stanciu is well poised to expand his influence through cross-disciplinary collaborations, international research networks, and mentorship roles. As transparent ceramics, non-linear optics, and quantum electronics continue to gain importance in global technology sectors, his expertise will remain indispensable.

Given the rise in demand for perovskite-based applications in solar cells, LED devices, and sensing technologies, his foundational work in this area could lead to patentable innovations and technological breakthroughs. There is also strong potential for leadership in international consortia and EU-funded research initiatives.

His future contributions will likely continue to reflect the same intellectual rigor, collaborative spirit, and innovative mindset that have characterized his career so far—making him not just a researcher, but a builder of scientific legacies. 🌱🚀

📝Notable Publications

The Micro-Structure of the Celiac Ganglia—A Two-Photon Microscopy Study on Parkinson’s Disease

Authors: Morgos, Diana Theodora; Eftimie, Lucian George; Nicolae, Horia; Tulin, Adrian Daniel; Filipoiu, Florin Mihail
Journal: Diagnostics
Year: 2025

Differential Diagnosis of Thyroid Tumors Through Information Fusion from Multiphoton Microscopy Images Using Fusion Autoencoder

Authors: Kethireddy, Harshith Reddy; Tejaswee, A.; Eftimie, Lucian George; Stanciu, George A.; Paul, Angshuman
Type: Conference Paper
Year: Not explicitly mentioned (assumed 2024–2025)

A Coronaviral Pore-Replicase Complex Links RNA Synthesis and Export from Double-Membrane Vesicles

Authors: Chen, Anan; Lupan, Ana Mihaela; Quek, Rui Tong; Mitchison, Timothy J.; Salic, Adrian N.
Journal: Science Advances
Year: 2024

 Antibacterial Interactions of Ethanol-Dispersed Multiwalled Carbon Nanotubes with Staphylococcus aureus and Pseudomonas aeruginosa

Authors: Asaftei, Mihaela; Lucidi, Massimiliano; Anton, Stefan Razvan; Visca, Paolo J.; Stanciu, Stefan G.
Journal: ACS Omega
Year: 2024

Dr. Eric Allara Ngaba | Decision-making and Problem-solving |Best Scholar Award

Dr. Eric Allara Ngaba | Decision-making and Problem-solving |Best Scholar Award

Université de N’Djamena, Chad

Author Profile

Google Scholar 

🎓 Early Academic Pursuits

Born on December 8, 1988, in N’Djamena, Chad 🇹🇩, Allara Ngaba Eric’s academic journey reflects a deep-rooted passion for economics and public policy. His formative years in higher education began at the University of Moundou, where he obtained his Licence in Economics between 2009 and 2011. Recognized for his academic potential early on, he pursued advanced studies in Cameroon — a strategic move that placed him at the heart of Francophone Africa’s academic and research excellence.

His intellectual curiosity and strong analytical capabilities led him to enroll at Université de Yaoundé II (Soa), where he simultaneously earned two Master’s degrees: one in Applied Economics (2013–2015), and another in Mathematical Economics and Econometrics (2013–2014). These rigorous programs provided him with a solid foundation in quantitative research, modeling, and data analysis, skills essential for tackling complex socio-economic issues. His academic journey culminated in a Doctorate (PhD) in Public and Human Resource Economics, with a specialization in Health Economics, awarded by the University of Dschang in 2018 🎓 — a testament to his dedication and scholarly excellence.

🧑‍🏫 Professional Endeavors

Allara’s professional path is marked by a consistent commitment to teaching, research, and public policy advisory. His teaching career began in earnest in February 2021 at the École Normale Supérieure of N’Djamena, where he served as a lecturer. His pedagogical contributions continued to evolve when, in March 2024, he was appointed as a lecturer-researcher at the Faculty of Economics and Management at the University of N’Djamena. There, he teaches both undergraduate and doctoral-level courses in the Department of Economics and Management, nurturing future economists and policy thinkers.

Parallel to his academic work, Allara gained significant international experience as a Technical Consultant at the United Nations Economic Commission for Africa (UNECA) in Addis Ababa, Ethiopia, from August 2019 to January 2021 🌍. Working directly with the Office of the Executive Secretary, he contributed to the development of strategic documents and flagship projects — an experience that broadened his policy perspective and exposed him to high-level development planning across the African continent.

📚 Contributions and Research Focus

A specialist in health economics, Allara’s research intersects gender equity, public health service delivery, and economic empowerment. His work focuses on how socio-economic and gender-related determinants impact access to health services, particularly maternal health in sub-Saharan Africa. His analytical expertise in econometrics enables him to address these issues with precision and scientific rigor.

Currently, two of his major papers are under second-round review in leading international journals. The first, submitted to Social Science & Medicine, investigates how different dimensions of women’s decision-making power affect early prenatal care utilization in Burkina Faso — an important topic given the region’s maternal health challenges 👩‍⚕️. The second, co-authored with regional scholars and under review at BMC Health Services Research, explores whether women’s participation in decision-making influences the timing of prenatal visits — a critical indicator of maternal and child health outcomes.

These works underscore his commitment to evidence-based research that informs health policy and promotes gender-sensitive public health strategies.

🏅 Accolades and Recognition

In July 2023, Allara achieved a significant academic milestone when he was officially registered as a Maître-Assistant by CAMES (Conseil Africain et Malgache pour l’Enseignement Supérieur) 🏅. This title not only acknowledges his scholarly achievements but also places him among the cadre of respected academics recognized across Francophone Africa. His association as a researcher at the Centre for Research in Applied Microeconomics (REMA) in Cameroon further cements his reputation as a cross-border scholar contributing to policy-relevant economic research.

🌍 Impact and Influence

Allara’s work is beginning to shape important discussions in African public health policy, especially as it relates to gender and health service access. His involvement in both academic and international policy environments allows him to bridge theory and practice effectively. As a mentor and instructor, he influences young economists in Chad — equipping them not only with technical skills but also with a critical understanding of development challenges in the African context.

His technical advisory role at the UNECA offered him a platform to contribute to continental policy agendas, especially in health financing and human resource development. Through his academic publications and policy briefs, he is becoming a recognized voice in regional development economics.

🌱 Legacy and Future Contributions

As a scholar-practitioner, Allara Ngaba Eric is poised to play a pivotal role in shaping the next generation of African economists and policymakers. His future ambitions likely include expanding his research into other areas of health economics, influencing health systems reform, and leading interdisciplinary collaborations across African universities and research institutions 🤝. With ongoing contributions to high-impact journals and increasing participation in academic networks, his visibility is set to grow within global research communities.

Looking ahead, his dedication to capacity building, evidence-based policy, and academic mentorship offers a roadmap for meaningful development in public health economics. By aligning his expertise with Africa’s pressing needs, Allara exemplifies the scholar-leader needed for the continent’s future.

📝Notable Publications

 Does safe delivery depend on antenatal care in Cameroon

Author(s): I. Danadji, E.A. Ngaba, C. Mapa
Journal: African Journal of Health Sciences
Year: 2022

Effect of gender inequalities on human capital development in Sub-Saharan Africa

Author(s): H. Tamboura, I. Danadji, E.A. Ngaba, A. Diallo
Journal: International Journal of Scientific Research in Multidisciplinary Studies
Year: 2022

Potential Economic Impact of the African Continental Free Trade Area (AfCFTA) on Chad: A Partial Equilibrium Analysis

Author(s): E.A. Ngaba, N. Bayale, S.N. Dobah
Journal: — (Journal name not specified in your input, possibly unpublished or conference paper)
Year: 2020

 Inequalities in effective access to obstetric care in Chad

Author(s): E.A. Ngaba, B.F. Kamga
Journal: African Journal of Economic Review
Year: 2021

From food inflation to cash transfers and food subsidies: Assessing impacts on households’ consumption and welfare in Togo

Author(s): N. Bayale, T. Lanie, E.A. Ngaba, M. Nagou, K. Abah
Journal: African Development Review
Year: 2023 (Note: Based on volume 36 (4), which corresponds to 2023)

Prof. Ning Yongquan | Materials Science and Engineering | Best Researcher Award

Prof. Ning Yongquan | Materials Science and Engineering | Best Researcher Award

Northwestern Polytechnical University, China

Author Profile

Google Scholar 

🎓 Early Academic Pursuits

Yongquan Ning’s academic journey began with a strong foundation in materials science and engineering, a discipline he would eventually come to master and significantly contribute to. Born on May 14, 1982, in the People’s Republic of China, Ning’s early academic promise was evident from his undergraduate years. He completed his Bachelor of Science in Materials Science and Engineering at Nanchang Hangkong University in 2005, a period during which he was already involved in hands-on research in composite materials. His undergraduate work, which explored the fabrication and thermophysical properties of SiCp/Al composites, showcased a keen interest in materials innovation and experimentation.

Driven by a thirst for deeper knowledge and technological contribution, Ning proceeded to Northwestern Polytechnical University (NPU) in Xi’an, where he earned his Master’s degree in 2008 and subsequently a Ph.D. in 2010. His doctoral research delved into the high-temperature deformation behavior and recrystallization mechanisms of powder metallurgy (P/M) superalloys, under the mentorship of the distinguished Prof. Zekun Yao. His academic career further culminated in a postdoctoral fellowship at NPU in 2011, complemented by a year as a research associate at the prestigious Hong Kong Polytechnic University. These formative years solidified his expertise and prepared him for a lifelong contribution to materials engineering. 📘🧪

🏢 Professional Endeavors

Upon the completion of his postdoctoral training, Dr. Ning took on a faculty position at the School of Materials Science and Engineering at Northwestern Polytechnical University. From his base at NPU, he launched a range of research initiatives with significant academic and industrial relevance. Among his most enduring projects has been the study and optimization of structural-gradient materials (SGMs) used in dual-property turbine disks—an innovation pivotal to aerospace engineering.

His professional work has seamlessly blended academic inquiry with applied science. Ning has actively investigated the intricate relationships between gradient-temperature-heat-treatment parameters and their impact on the microstructure and mechanical properties of advanced alloys. His understanding of microstructure transitions, particularly the control of duplex grain regions, has enabled optimization efforts that significantly enhance the dual mechanical properties needed in high-performance turbine components.

🔬 Contributions and Research Focus

Dr. Ning’s primary research focus has revolved around the development and refinement of high-performance superalloys and structural-gradient materials. His contributions to understanding microstructural evolution during thermomechanical processing, including isothermal forging and hot compression, have offered novel insights into recrystallization behaviors and grain refinement mechanisms.

His work with powder metallurgy FGH4096 superalloys between 2006 and 2010 established foundational knowledge about the internal relationships between flow behavior and initial microstructures in HIPed (Hot Isostatically Pressed) materials. Additionally, his investigations into IN718 and GH4133A superalloys under various deformation conditions have had a lasting impact on forging technologies and alloy design strategies. 🔧🧬

🏅 Accolades and Recognition

Dr. Ning’s academic excellence has been recognized consistently throughout his educational and professional career. As a student, he was the recipient of the First-Class Scholarship from NPU for four consecutive years (2006–2009), reflecting his outstanding academic performance and research achievements. In 2008, his growing expertise was acknowledged with the Second-Class Special Scholarship from the China Air-to-Air Missile Research Institute—an endorsement of both his intellectual capacity and the practical significance of his research in national defense technology.

In 2010, he was further honored with the Second-Class Chongde Scholarship awarded by the School of Materials Science and Engineering, signifying high regard from his academic community. 🏆📜

🌍 Impact and Influence

Through his research and teaching, Dr. Ning has influenced both his peers and a new generation of materials scientists. His investigations into gradient microstructures have provided critical pathways for improving dual-property materials, which are now crucial in aerospace and energy sectors. His close collaboration with both academic and industrial institutions has helped translate complex metallurgical theory into real-world engineering applications.

Furthermore, his work has added to the global body of knowledge on powder metallurgy and thermomechanical processing, enhancing the scientific community’s ability to develop materials that are lighter, stronger, and more resilient under extreme conditions. His scientific outputs not only push the boundaries of materials performance but also contribute directly to technological competitiveness in sectors vital to national and global progress. 🌐🚀

🧭 Legacy and Future Contributions

As a scholar grounded in both theory and application, Dr. Yongquan Ning’s legacy lies in his methodical approach to solving some of the most pressing challenges in materials science. With a professional ethos rooted in curiosity, precision, and innovation, he is poised to continue contributing significantly to the development of high-performance materials for aerospace, defense, and energy systems.

Looking forward, Ning is expected to deepen his research in structural-gradient materials, possibly exploring additive manufacturing integrations and AI-driven materials design—fields that align with global trends in smart manufacturing and digital engineering. Through continued mentorship, publication, and cross-disciplinary collaboration, he stands to leave an enduring mark on both academic research and industry practices. 🔭📈

📝Notable Publications

Competition between dynamic recovery and recrystallization during hot deformation for TC18 titanium alloy

Authors: Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, K. Tan
Journal: Materials Science and Engineering: A, Vol. 635, pp. 77–85
Year: 2015

Dynamic softening behavior of TC18 titanium alloy during hot deformation

Authors: Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, H.Z. Guo
Journal: Materials & Design, Vol. 71, pp. 68–77
Year: 2015

DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures

Authors: B. Xie, H. Yu, T. Sheng, Y. Xiong, Y. Ning, M.W. Fu
Journal: Journal of Alloys and Compounds, Vol. 803, pp. 16–29
Year: 2019

Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains

Authors: B. Xie, B. Zhang, Y. Ning, M.W. Fu
Journal: Journal of Alloys and Compounds, Vol. 786, pp. 636–647
Year: 2019

Microstructure evolution and underlying mechanisms during the hot deformation of 718Plus superalloy

Authors: B. Xie, B. Zhang, H. Yu, H. Yang, Q. Liu, Y. Ning
Journal: Materials Science and Engineering: A, Vol. 784, Article 139334
Year: 2020

Prof. Guorui Xu | Strategy and power management | Best Researcher Award

Prof. Guorui Xu | Strategy and power management | Best Researcher Award

North China Electric Power University, China

Author Profile

Scopus 

🎓 Early Academic Pursuits

Professor Guorui Xu’s journey into the realm of electrical engineering began with a solid foundation laid at the Taiyuan University of Technology, where he earned his Bachelor of Engineering in 2007. Motivated by a deep interest in electric machinery, he continued his education at North China Electric Power University (NCEPU) in Beijing. There, he earned both his Master of Engineering in 2010 and Ph.D. in Electric Machines and Apparatus in 2014. These formative years not only provided him with a robust theoretical understanding of electrical systems but also immersed him in research projects that would later form the backbone of his professional legacy. His academic path reflected an unwavering commitment to excellence, setting the stage for a lifelong dedication to innovation in the field of power engineering.

🏛️ Professional Endeavors

Following his doctoral studies, Dr. Xu joined NCEPU as a lecturer, quickly earning recognition for his insightful research and effective teaching methods. After three years of service in this role, he was promoted to Associate Professor, where he remained for five years. Today, he serves as a Professor and Ph.D. Supervisor at NCEPU, continuing to mentor young scholars and lead pioneering research in synchronous generators and power control. In his role, Professor Xu actively engages in large-scale projects that bridge academia with industry, demonstrating a unique ability to translate complex theories into practical, impactful innovations. His position also allows him to contribute to the strategic development of China’s electrical power sector through leadership in research, innovation, and policy advising.

🔬 Contributions and Research Focus

Professor Xu’s research primarily revolves around the development, operation, and control of new-type synchronous generators and condensers—a critical domain within power systems engineering. His scholarly output includes over 150 publications, with 66 indexed in SCI and Scopus databases, illustrating his active engagement with the global academic community. One of his notable papers was recognized as a Top Cited Article by IET Electric Power Applications, underscoring the relevance and resonance of his work among peers.

He has led and participated in 30 major research projects, many of which are supported by competitive funding sources, amounting to over RMB 25 million. His technical expertise is further validated by an impressive portfolio of 29 patents in electric machinery, of which 24 are Chinese invention patents that directly contribute to the innovation ecosystem in the power sector. Additionally, his research extends into electromagnetic force characteristics, transient behavior analysis, and control strategy optimization for dual-excited and doubly-fed machines.

🏅 Accolades and Recognition

Over the years, Professor Xu has received numerous prestigious honors that recognize his contributions to electrical engineering. Notably, he has been awarded two Provincial and Ministerial Science and Technology Progress Awards and five industry and association-level prizes. Two of his papers received the Outstanding Paper Award from the IEEE Industry Applications Society, a testament to their innovation and technical rigor.

In recognition of his service to the academic and professional community, he serves as a Young Editorial Board Member for the journal Large Electric Machine and Hydraulic Turbine and as a Technical Program Committee Member for the 2024 Asia Conference on Energy and Electrical Engineering. He is also a Senior Member of IEEE, a Committee Member of the Chinese Society for Electrical Engineering (CSEE), and an active participant in the Large Electrical Machinery Committee of the Chinese Society for Electrical Technology.

🌐 Impact and Influence

Professor Xu’s impact is visible both in academic circles and in the real-world application of his research. With a Web of Science citation index of over 508, his work influences fellow researchers and practitioners worldwide. His innovations have directly contributed to improving the efficiency, reliability, and sustainability of power systems in China and beyond. He has also served as the team leader for the Outstanding Contribution Team in the Proceedings of the Chinese Society for Electrical Engineering (CSEE), further amplifying his influence in shaping the discourse in electric machinery research.

Moreover, his 20 consultancy projects with industry underscore his ability to translate academic research into technologies and solutions that benefit electrical utilities and manufacturers. His work on excitation control, electromagnetic modeling, and power tracking systems plays a crucial role in modernizing power generation and distribution infrastructures.

🌟 Legacy and Future Contributions

Looking ahead, Professor Guorui Xu remains a visionary in the field of power engineering. His continued focus on the next generation of synchronous machines, with smarter control strategies and environmentally responsive designs, places him at the forefront of China’s efforts toward a low-carbon, energy-efficient future. As a mentor and educator, he is shaping the minds that will carry forward the torch of innovation, ensuring a resilient and sustainable energy ecosystem.

Through his persistent research, academic service, and thought leadership, Professor Xu is not only enhancing the scientific understanding of electrical machinery but also cultivating a legacy of excellence, mentorship, and technological advancement that will inspire generations to come.

📝Notable Publications

Influence of Rotor Damping Structures on Power Tracking Excitation Control Characteristics of Dual-excited Synchronous Generator

Authors: Xu, Guorui; Fu, Yue; Zhang, Jiancheng
Journal: Zhongguo Dianji Gongcheng Xuebao / Proceedings of the Chinese Society of Electrical Engineering
Year: 2025

A New Power Flow Controller Based on Dual-Excited Synchronous Machine

Authors: Xu, Guorui; Li, Qianwei; Wang, Hao; Sun, Fuke; Lin, Jintian
Journal: IEEE Transactions on Industry Applications
Year: 2025

 Electromagnetic Force Characteristics of Doubly-Fed Induction Machines Considering Harmonics from Rotor-Side Converters

Authors: Wang, Chenbo; Wu, Zhiqiang; Ren, Chaofan; Xu, Guorui; Zhao, Haisen
Journal: IEEE Transactions on Industry Applications
Year: 2025

 Numerical Calculation for Transient and Sub-Transient Parameters of Dual-Excited Synchronous Generator Based on Time-Stepping Finite Element Model

Authors: Xu, Guorui; Yang, Guangliang; Shen, Haipeng; Cui, Xueshen; Zhao, Haisen
Journal: IEEE Transactions on Industry Applications
Year: 2025

Reduced-Order Electromagnetic Transient Model Based on Equivalent Flux Linkage Derivative for Induction Motors Under Voltage Sag Condition

Authors: Yang, Guangliang; Guan, Tongyu; Kang, Jinping; Xu, Guorui; Zhao, Haisen
Journal: IET Electric Power Applications
Year: 2024

Assist Prof Dr. Xianshu Qiao | Electrocatalysis | Best Researcher Award

Assist Prof Dr. Xianshu Qiao | Electrocatalysis | Best Researcher Award

Jingdezhen Ceramic University, China

Author Profile

Orcid

🌱 Early Academic Pursuits

Dr. Xianshu Qiao’s journey in materials science began with a strong foundation in chemical engineering. She earned her Master’s degree in Chemical Engineering and Technology from Inner Mongolia University of Technology, China, where she developed a keen interest in chemical processes and reaction mechanisms. Her master’s dissertation, focused on the absorption of sulfur dioxide and the preparation of barium sulfate using a triethylene glycol and dimethyl sulfoxide system, showcased her ability to tackle complex chemical challenges. This early exposure to chemical processes not only honed her analytical skills but also laid the groundwork for her future exploration of catalysis and materials science.

Her academic pursuit reached new heights when she embarked on a Ph.D. program in Materials Science and Engineering at Harbin Institute of Technology, one of China’s top technical universities. Under the mentorship of distinguished professors Wei Qin and Xiaohong Wu, Dr. Qiao focused on the preparation of iridium and iron co-modified β-Ni(OH)₂ electrode materials, with a particular emphasis on their oxygen evolution performance. Her doctoral research was marked by a meticulous approach to material design and synthesis, leading to the development of highly efficient electrode materials. These experiences not only enriched her scientific knowledge but also cemented her passion for electrocatalysis, a field that would become the core of her research career.

💡 Professional Endeavors

Dr. Xianshu Qiao’s career as an academic and researcher has been defined by her role as an Associate Professor of Materials Science at Jingdezhen Ceramic University. In this position, she has seamlessly integrated teaching, mentorship, and research, shaping the next generation of scientists while advancing the field of materials science. Her dedication to education is evident in her ability to inspire students, instilling in them a strong foundation in scientific principles and a curiosity for research.

In her research, Dr. Qiao has established herself as a leading figure in the development of transition metal-based electrocatalysts. Her work centers on the rational design, controlled synthesis, and catalytic reaction mechanisms of materials, particularly those involving nickel, iron, and cobalt compounds. Her extensive research on these materials has led to significant advancements in the efficiency of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), two critical processes for sustainable energy conversion. As a researcher, she has demonstrated a rare ability to bridge theoretical insights with practical applications, making substantial contributions to the development of efficient, durable catalysts.

🔬 Contributions and Research Focus

Dr. Xianshu Qiao’s research is characterized by a deep understanding of transition metal-based electrocatalysts, particularly those involving nickel, iron, and cobalt. Her focus on the rational design and controlled synthesis of these materials has led to the development of catalysts with exceptional performance in OER and HER. These reactions are vital for renewable energy technologies, including water splitting and hydrogen production.

Her work has resulted in numerous high-impact publications, including 13 SCI papers as the first author in internationally recognized journals such as Applied Catalysis B: Environmental, Small, International Journal of Hydrogen Energy, ACS Applied Materials and Interfaces, and Inorganic Chemistry Frontiers. These publications reflect not only her expertise in the field but also her commitment to advancing scientific knowledge. In addition to her first-author publications, she has co-authored more than 30 SCI papers, demonstrating her ability to collaborate with other researchers and contribute to multidisciplinary projects.

One of her most notable achievements is the development of porous Fe-doped β-Ni(OH)₂ nanopyramid array electrodes for water splitting, a breakthrough that has been widely recognized in the field. Her innovative approach to catalyst design, involving electronic dual modulation and grain boundary engineering, has set a new standard for the performance of transition metal-based catalysts. This work has not only advanced the understanding of catalytic mechanisms but also paved the way for the development of next-generation energy storage and conversion technologies.

🏆 Accolades and Recognition

Dr. Xianshu Qiao’s contributions to materials science have earned her significant recognition in the scientific community. Her research has been published in some of the most prestigious journals in the field, and her work on transition metal-based electrocatalysts has been widely cited by peers worldwide. Her reputation as a leading researcher is further reinforced by her extensive publication record, which includes 13 first-author SCI papers and over 30 co-authored SCI papers.

Beyond her publications, Dr. Qiao has been recognized for her ability to mentor and inspire young researchers. Her role as an educator at Jingdezhen Ceramic University has allowed her to shape the careers of aspiring scientists, fostering a culture of academic excellence and intellectual curiosity. Her dedication to scientific rigor and innovation has made her a respected figure in the academic community.

🌍 Impact and Influence

The impact of Dr. Qiao’s research extends far beyond her publications. Her innovative work on efficient electrocatalysts has the potential to drive the development of sustainable energy solutions, contributing to global efforts to combat climate change. By improving the efficiency of OER and HER, her catalysts can enhance the performance of renewable energy systems, making them more viable for large-scale applications.

As an educator and mentor, Dr. Qiao has influenced the next generation of scientists, equipping them with the skills and knowledge needed to excel in their careers. Her ability to foster a collaborative and intellectually stimulating research environment has inspired many young researchers to pursue careers in materials science.

🌟 Legacy and Future Contributions

Dr. Xianshu Qiao’s legacy is one of scientific excellence, innovation, and mentorship. Her groundbreaking research on transition metal-based electrocatalysts has transformed the field of catalysis, providing new insights into the design and optimization of efficient, durable catalysts. As she continues to explore new materials and catalytic mechanisms, her work will likely lead to further advancements in sustainable energy technologies.

In the future, Dr. Qiao is expected to expand her research into new areas of energy conversion and storage, exploring the potential of novel materials and catalytic systems. Her commitment to education and mentorship will continue to shape the careers of young scientists, ensuring that her legacy endures for generations to come.

📝Notable Publications

 Hierarchical Ultrafine Nanosheet-Based O-Doped FeCoS₂ Microsphere Catalyst for Highly Efficient Oxygen Evolution Reaction

Author: Xianshu Qiao
Journal: International Journal of Hydrogen Energy
Year: 2025

Ultra-Small β-Ni(OH)₂ Quantum Dot Catalyst with Abundant Edges for an Efficient Urea Oxidation Reaction

Author: Xianshu Qiao
Journal: Inorganic Chemistry Frontiers
Year: 2025

Modulating Electronic Structure of Iridium Single-Atom Anchored on 3D Fe-Doped β-Ni(OH)₂ Catalyst with Nanopyramid Array Structure for Enhanced Oxygen Evolution Reaction

Author: Xianshu Qiao
Journal: Small
Year: 2024

 Grain Boundary Density and Electronic Dual Modulation of Intermetallic Co₂B by Fe Doping Toward Efficient Catalyst for Oxygen Evolution Reaction

Author: Xianshu Qiao
Journal: Applied Catalysis B: Environmental
Year: 2022

Novel FeNi-Based Nanowires Network Catalyst Involving Hydrophilic Channel for Oxygen Evolution Reaction

Author: Xianshu Qiao
Journal: Small
Year: 2022

Mr. Guangyao Li | adsorption | Best Researcher Award

Mr. Guangyao Li | adsorption | Best Researcher Award

kyushu university, Japan

Author Profile

Scopus

🌱 Early Academic Pursuits

Lee Kuan Yew’s journey in academia began with a strong foundation in engineering, a field that combines creativity, problem-solving, and technical knowledge. Hailing from Xinxiang, Henan, he pursued his undergraduate studies at Henan Polytechnic University, where he earned a Bachelor of Engineering in Mechanical Design. His education in this institution laid the groundwork for his understanding of core mechanical concepts, including Engineering Thermodynamics, Mechanical Design, and Automation Technology. These formative years instilled in him a profound appreciation for the principles of mechanics and thermodynamics, which would later become central to his research.

Driven by an unrelenting desire for advanced knowledge, Lee Kuan Yew furthered his studies at Zhengzhou University, a prestigious Double First-Class institution, where he earned a Master of Engineering in Power Engineering. His curriculum covered a wide range of subjects, from Advanced Heat Transfer and Fluid Mechanics to Numerical Analysis and Industrial Energy Management. These courses equipped him with both theoretical insights and practical skills, making him proficient in the nuances of energy systems. His academic prowess and enthusiasm for research led him to pursue a Ph.D. in Mechanical and System Engineering at Kyushu University in Japan, sponsored by the China Scholarship Council (CSC). At this renowned institution, he delved into complex topics like Thermal Energy Utilization Systems and Numerical Fluid Mechanics, honing his expertise in thermal engineering.

🚀 Professional Endeavors

Lee Kuan Yew’s professional journey has been marked by diverse and impactful experiences. Since 2022, he has been actively involved in the development of adsorption refrigeration and heat pump systems at Mitsubishi Electric Corporation. His role has been pivotal in designing and constructing a fixed-volume adsorption isotherm measurement device and analyzing the adsorption characteristics of materials for refrigerants like R245fa. This work not only refined his technical skills but also positioned him at the forefront of sustainable energy technology.

His expertise in adsorption technology further extended to collaborative research with ENEOS from 2022 to 2024, where he investigated the absorption characteristics of novel compressor oils and refrigerants under varying pressures and temperatures. His meticulous data collection and analysis contributed significantly to the development of advanced energy systems.

Lee Kuan Yew also played a critical role in a groundbreaking project with NEDO, focusing on carbon dioxide capture, storage, and utilization. Here, he developed a CO₂ absorption characteristic measurement device and formulated a mathematical model to analyze the absorption behavior of CO₂ using an amino + ether phase change solution. This work underscored his commitment to tackling global environmental challenges.

🔬 Contributions and Research Focus

Throughout his career, Lee Kuan Yew has made substantial contributions to the field of thermal energy and environmental technology. His research primarily revolves around adsorption heat pumps, absorption technology, and carbon capture. Notably, he has been involved in the development of high-performance adsorbents derived from biomass for carbon capture, merging experimental work with molecular simulations to optimize efficiency.

His research on adsorption heat pumps, including the development of a metal roller anti-stick coating for industrial applications, has showcased his ability to bridge theory with practice. Moreover, his work on fly ash-based zeolite synthesis, funded by the Henan Provincial Department of Science and Technology, demonstrated his dedication to sustainable material development.

Lee Kuan Yew has also authored several academic publications, including a paper on “Superhydrophobic Surface-modified Zeolite to Regulate the Migration of Nonadsorbed Liquid Water in an Open-loop Adsorption Heat Pump,” published in Applied Thermal Engineering. His other work on “Performance Improvement of Waste Heat Upgrading Adsorption Heat Pump by Employing Copper Oxide-Loaded Composite Zeolites for High-Temperature Steam Generation” is currently under review, further highlighting his ongoing commitment to advancing thermal engineering.

🏆 Accolades and Recognition

Lee Kuan Yew’s dedication to excellence has earned him numerous awards and recognitions. In 2021, he was honored as an Excellent Volunteer for Flood Control by the Henan Provincial Civilization Committee, a testament to his sense of responsibility and commitment to community welfare. During the COVID-19 pandemic, he received a Commendation for Fighting the Epidemic from the Communist Youth League of Xinxiang Municipal Committee, recognizing his willingness to serve during challenging times.

His academic excellence has also been acknowledged through scholarships awarded by the Henan Provincial Department of Education (2019-2022) and a Third Prize at the Zhengzhou University Graduate Innovation Competition in 2021. These honors not only reflect his intellectual abilities but also his perseverance and dedication.

🌐 Impact and Influence

Lee Kuan Yew’s work has had a profound impact on the field of thermal energy, particularly in the development of sustainable energy solutions. His research on adsorption heat pumps and carbon capture has the potential to revolutionize energy systems, making them more efficient and environmentally friendly. His active participation in industrial projects with Mitsubishi Electric Corporation and ENEOS has enabled him to bridge the gap between theoretical research and practical applications, creating technologies that can directly benefit society.

Moreover, his academic publications have enriched the scientific community’s understanding of adsorption and absorption processes, providing a foundation for future research in the field. His expertise in computational tools such as Material Studio, CAD, SolidWorks, and Comsol further enhances his ability to drive innovation.

🌟 Legacy and Future Contributions

As a young scholar and engineer with a passion for sustainability, Lee Kuan Yew’s journey is far from over. His continuous pursuit of excellence in research and his ability to translate complex scientific concepts into real-world solutions position him as a promising leader in the field of thermal energy. Moving forward, he aims to explore new frontiers in energy conversion and environmental technology, contributing to a greener, more sustainable world.

📝Notable Publications

Performance Improvement of Waste Heat Upgrading Adsorption Heat Pump by Employing Copper Oxide-Loaded Composite Zeolites for High-Temperature Steam Generation

Authors: G. Li (Guangyao), B. Xue (Bing), H. Yu (Hao), K. Thu (Kyaw), T. Miyazaki (Takahiko)
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year: 2025

Dr. Yiyuan Zheng | Healthcare | Best Researcher Award

Dr. Yiyuan Zheng | Healthcare | Best Researcher Award

Shanghai Municipal Hospital of Traditional Chinese Medicine, China

Author Profile

Scopus

🌱 Early Academic Pursuits

Dr. Yiyuan Zheng’s journey into the world of medicine began with a strong foundational education in traditional Chinese medicine (TCM). Driven by a deep curiosity about the ancient wisdom of herbal remedies and natural healing, Dr. Zheng pursued higher education in TCM, laying a robust academic foundation. Her passion for blending tradition with modern science was evident from the outset, as she immersed herself in both classical texts of Chinese medicine and emerging scientific research.

🏥 Professional Endeavors

Dr. Zheng serves as an associate researcher and associate professor at Shanghai Municipal Hospital of Traditional Chinese Medicine, where she seamlessly bridges clinical practice with research. Her dual roles allow her to not only guide patients towards better health through TCM techniques but also to explore and validate these techniques through rigorous scientific investigation. Her professional journey is marked by a commitment to enhancing the understanding and application of TCM for chronic metabolic diseases, particularly fatty liver and obesity.

🔬 Contributions and Research Focus

A defining aspect of Dr. Zheng’s work is her focus on the integrative application of traditional Chinese medicine techniques, including herbal tea formulations, aromatherapy, and acupoint embedding. Her research primarily targets the prevention and treatment of chronic metabolic diseases such as fatty liver disease and obesity. Notably, she has conducted extensive clinical and foundational research on the efficacy of traditional Chinese herbal tea in addressing metabolic dysfunction-related fatty liver disease. This work has provided valuable insights into the therapeutic potential of herbal medicine, bridging the gap between traditional practices and modern healthcare.

🏆 Accolades and Recognition

Dr. Zheng’s dedication to TCM research has earned her recognition within the medical community. As an associate professor and researcher at a prestigious institution, she has established herself as an expert in the field. Her contributions have been acknowledged through various academic and professional accolades, and she is frequently invited to share her insights at national and international conferences, contributing to the global understanding of TCM.

🌐 Impact and Influence

Beyond her direct research contributions, Dr. Zheng’s work has significantly impacted the field of TCM, particularly in the area of metabolic diseases. By validating the efficacy of traditional techniques through clinical research, she has strengthened the credibility of TCM within modern medical practice. Her research has also informed clinical guidelines, benefiting countless patients suffering from chronic metabolic disorders.

🌟 Legacy and Future Contributions

Dr. Yiyuan Zheng’s commitment to advancing traditional Chinese medicine is evident in her ongoing research and patient care. As she continues to explore the integrative application of TCM for metabolic health, her work is poised to further enhance the understanding of how ancient wisdom can complement modern medicine. Her legacy will be defined by her contributions to evidence-based TCM practice, her role in educating the next generation of TCM practitioners, and her unwavering dedication to patient well-being.”)

📝Notable Publications

📄 Ursolic Acid Modulates Estrogen Conversion to Relieve Inflammation in Metabolic Dysfunction-associated Steatotic Liver Disease via HSD17B14

Authors: Simin Gu, Hui Zhang, Zhekun Xiong, Yiyuan Zheng, Yong Li

Journal: Journal of Clinical and Translational Hepatology

Year: 2025

📄 Research Progress on the Molecular Mechanisms of Saikosaponin D in Various Diseases (Review)

Authors: Simin Gu, Yiyuan Zheng, Chong Chen, Jing Liu, Yanping Wang, Junmin Wang, Yong Li

Journal: International Journal of Molecular Medicine

Year: 2025

Assoc Prof Dr. Atousa Aliahmadi | Decision-making and Problem-solving | Best Academic Researcher Award

Assoc Prof Dr. Atousa Aliahmadi | Decision-making and Problem-solving | Best Academic Researcher Award

Shahid Beheshti University, Iran

Author Profile

Google Scholar 

🌱 Early Academic Pursuits

Dr. Atousa Aliahmadi’s academic journey began with a profound curiosity about the natural world and the unseen microbial forces that influence health, agriculture, and biotechnology. She pursued her Master of Science in Microbiology from 1999 to 2002, laying a solid foundation in microbial research techniques and plant-based bioactivity studies. However, it was during her doctoral studies from 2006 to 2011 at the University of Isfahan—one of Iran’s most prestigious institutions—that her academic pursuits took a distinctive direction. Selected through a talent-based acceptance program by Iran’s Ministry of Science, Research and Technology, she joined the Ph.D. program with high academic merit.

Her doctoral thesis, entitled “Investigation of antibacterial and anti-inflammatory effects of plant peptides and extracts,” marked a critical phase in her scientific formation. Throughout her five-year, full-time Ph.D. program, she delved deeply into the bioactive potential of over 20 plant species. By mastering sophisticated analytical techniques such as High-Performance Liquid Chromatography (HPLC), High-Performance Thin Layer Chromatography (HPTLC), two-dimensional electrophoresis (2DE), and various bioassays, she became an expert in isolating and characterizing antimicrobial peptides and phytochemicals. Her research was not only academically rigorous but also practically innovative, yielding peer-reviewed publications and multiple international conference presentations.

🧪 Professional Endeavors

Currently serving as an Associate Professor and Principal Investigator based in Evin, Tehran, Iran, Dr. Aliahmadi holds an academic appointment at Shahid Beheshti University. Her career has blended academic scholarship with applied research. Notably, she was awarded a scholarship and appointed a lecturer at the Medicinal Plants and Drugs Research Institute during her Ph.D., underscoring her early recognition as a promising scientist.

In her role as principal investigator, she has led interdisciplinary projects that integrate microbiology, phytochemistry, and biotechnology. She focuses on harnessing plant and microbial natural products, both primary and secondary metabolites, for applications ranging from food safety to pharmaceuticals. Her research translates laboratory findings into real-world applications such as essential oil-based nano-emulsions for the food and healthcare industries, and plasma, ozone, and microwave decontamination technologies for edible products including spices, vegetables, and saffron.

🧬 Contributions and Research Focus

Dr. Aliahmadi’s research portfolio is impressively broad yet interconnected by a central theme: the discovery and utilization of bioactive natural compounds for health and industrial benefits. She has made significant strides in the areas of antimicrobial and anti-biofilm compound identification, specifically targeting the growing issue of antibiotic resistance. One of her notable scientific pursuits involves elucidating the mechanisms of natural antibacterial agents using advanced analytical tools, particularly in discovering inhibitors of bacterial efflux pumps—key mechanisms by which bacteria develop resistance to antibiotics.

Her interest in nanotechnology is equally groundbreaking. She has developed essential oil-based nano-emulsions that enhance the bioavailability and efficacy of plant compounds, particularly in food preservation and medical applications. Furthermore, she has expanded her work to the field of recombinant protein development, contributing to diagnostics and therapeutic interventions.

🏆 Accolades and Recognition

Dr. Aliahmadi’s academic excellence and innovative research have not gone unnoticed. Her talent-based admission into a competitive Ph.D. program and subsequent scholarship from Shahid Beheshti University reflect early and sustained recognition of her potential. During her Ph.D. candidacy, her contributions to both research and academia were rewarded with a lecturing position, a rare accomplishment that attests to her capabilities and dedication.

Her academic output—comprising peer-reviewed journal articles and conference presentations—has bolstered her reputation as a thought leader in natural product microbiology and applied biotechnology. Her work stands at the intersection of traditional knowledge and modern science, a niche that commands growing relevance in today’s healthcare and environmental contexts.

🌍 Impact and Influence

Beyond publications and projects, Dr. Aliahmadi’s work has practical implications that resonate globally. With antibiotic resistance rising as a global health crisis, her investigations into plant-derived efflux pump inhibitors provide valuable alternatives to conventional antibiotics. Her decontamination methods using plasma radiation, ozone, and microwave technologies have direct applications in improving food safety, an essential issue for public health in both developing and developed nations.

Moreover, her nanotechnology research has opened new frontiers in natural product delivery systems, influencing food science, nutraceuticals, and drug development. As a mentor and principal investigator, she also shapes the next generation of researchers through training, supervision, and academic guidance.

🔮 Legacy and Future Contributions

Looking forward, Dr. Aliahmadi’s legacy is likely to be marked by the continued integration of nature and technology to solve pressing health and industrial problems. She is poised to further contribute to sustainable healthcare through plant-based innovations and environmentally friendly food processing technologies. With the increasing demand for safe, effective, and natural alternatives in pharmaceuticals and food industries, her multidisciplinary expertise will remain crucial.

Her future endeavors may include collaborative international projects, patentable innovations in natural antimicrobial agents, and possibly the commercial scaling of some of her decontamination and nano-emulsion technologies. Dr. Aliahmadi’s career exemplifies how deeply rooted academic inquiry, when paired with a visionary application, can yield both scientific progress and societal benefit.

Notable Publications

Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli

Authors: R. Moghimi, L. Ghaderi, H. Rafati, A. Aliahmadi, D.J. McClements
Journal: Food Chemistry
Year: 2016

Antibacterial effect of silver nanoparticles on Staphylococcus aureus

Authors: F. Mirzajani, A. Ghassempour, A. Aliahmadi, M.A. Esmaeili
Journal: Research in Microbiology
Year: 2011

Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging

Authors: R. Moghimi, A. Aliahmadi, H. Rafati
Journal: Carbohydrate Polymers
Year: 2017

Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress

Authors: F. Teimouri, N. Amirkabirian, H. Esmaily, A. Mohammadirad, A. Aliahmadi, et al.
Journal: Human & Experimental Toxicology
Year: 2006

Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens

Authors: R. Moghimi, A. Aliahmadi, D.J. McClements, H. Rafati
Journal: LWT – Food Science and Technology
Year: 2016

Dr. Amani Aridi | Environmental Sciences | Best Researcher Award

Dr. Amani Aridi | Environmental Sciences | Best Researcher Award

Modern University for Business and Science, Lebanon

Author profile

Orcid 

📚 Early Academic Pursuits

From the earliest stages of her academic life, Amani Aridi demonstrated an exceptional commitment to the sciences. After earning her Bachelor of Science (BSc) in Chemistry from the Lebanese University’s Faculty of Science between 2012 and 2015, she quickly deepened her expertise with a Master’s Degree (M1) in Environmental Chemistry. Not content with a singular specialization, she pursued a second Master’s Degree (M2) in Expertise and Treatment in Environment during 2016–2017, where she gained hands-on technical experience in the American University of Beirut’s Environmental Core Laboratory. Her dedication culminated in a Ph.D. in Physical Chemistry from Beirut Arab University (2018–2022), focusing on the cutting-edge fields of nanoparticle development for environmental applications. These intensive academic pursuits provided her a strong foundation in experimental design, chemical analysis, and environmental remediation.

🏫 Professional Endeavors

Amani’s transition from academia to teaching was both natural and impactful. Her early experience began as a lab instructor at Beirut Arab University, where she mentored students in hands-on chemistry labs. Post-Ph.D., she served as an Assistant Professor (part-time) at Beirut Arab University between 2022 and 2023, teaching a variety of core courses ranging from Advanced Physical Chemistry to Chemical Kinetics. In October 2024, she embraced a full-time Assistant Professor role at the Modern University of Business and Science, Lebanon. Here, she diversified her portfolio by offering both lecture-based and laboratory-based courses such as Organic Chemistry, Chemical Principles, Elementary Chemistry, and Elementary Physics, thereby nurturing the scientific minds of tomorrow.

🔬 Contributions and Research Focus

Amani Aridi’s research is rooted in solving real-world environmental problems using advanced materials science. Her expertise lies in the preparation and characterization of nanoparticles and nanocomposites, with an emphasis on photocatalytic degradation and adsorption techniques for wastewater treatment. She has developed innovative ferrite nanoparticles for the removal of heavy metals and dyes, offering sustainable and efficient methods for pollutant removal. Her work in physical chemistry of interfaces has practical implications in improving water quality, contributing significantly to environmental sustainability initiatives. Additionally, she has maintained a strong presence in scholarly publishing, reviewing manuscripts for prestigious journals such as RSC Advances, Arabian Journal of Chemistry, and Chemical Papers, ensuring the quality and integrity of scientific research.

🏆 Accolades and Recognition

Amani’s contributions have not gone unnoticed. She has been trusted as a peer reviewer for multiple international journals—an honor reserved for researchers with deep expertise and meticulous attention to scientific rigor. She also served as a jury member for the “Spectroscopic Identification of Chemical Compound – Poster Day 2019” event at Beirut Arab University, validating her reputation as a knowledgeable and fair evaluator in academic settings. Her mentoring of graduate students towards their Master’s and PhD degrees further highlights her role as a pillar in her academic community.

🌍 Impact and Influence

Beyond her immediate academic duties, Amani Aridi’s work contributes to larger environmental goals. By focusing on low-cost, efficient nanomaterials for pollution remediation, she addresses critical issues such as water scarcity and pollution—topics of global concern. Her scientific outreach ensures that her influence extends beyond classrooms and laboratories, as she actively shapes discussions around sustainable environmental technologies. Her mentorship, peer reviews, and participation in scientific events continue to inspire and influence upcoming researchers.

🕊️ Legacy and Future Contributions

Looking ahead, Amani Aridi’s legacy is poised to grow. Her commitment to both education and innovative environmental research ensures that she will remain a critical voice in shaping future sustainability technologies. Potential future contributions could include pioneering new-generation nanomaterials, expanding interdisciplinary collaborations, and developing international projects to tackle environmental challenges on a larger scale. With her profound technical skills, passion for teaching, and unwavering dedication to scientific progress, Amani stands as a beacon for future scientists and environmental innovators.

Notable publications 

Exploring the influence of heat treatment duration and temperature on the properties and adsorption performance of Sn₀.₅Ni₀.₃Mn₀.₂Fe₂O₄ nanoparticles

Author: Amani Aridi
Journal: Environmental Science and Pollution Research
Year: 2025

Synthesis, Structural Characterization, and Magnetic Properties of La³⁺- and Bi³⁺-Doped Co–Ni–Zn–Cu Ferrite Nanoparticles

Author: Amani Aridi
Journal: Ceramics International
Year: 2025

Removal of radioactive Co(II) and Sr(II) using (Co₀.₅Zn₀.₅)Fe₂O₄ nanoparticles co-doped with barium and antimony

Author: Amani Aridi
Journal: Ceramics International
Year: 2025

Adsorptive performance of bismuth-doped Ni-Zn-Co ferrite nanoparticles for the removal of methylene blue dye

Author: Amani Aridi
Journal: Environmental Science and Pollution Research
Year: 2024

 Synthesis, Characterization, and Adsorption Performance of (Mg₀.₄Co₀.₄Mn₀.₂)Fe₂−₂ₓSmₓSnₓO₄ Nanoparticles for the Removal of Heavy Metal Ions and Water Treatment

Author: Amani Aridi
Journal: ChemistrySelect
Year: 202

Prof. HRUDANANDA JENA | Research and development in science | Best Researcher Award

Prof. HRUDANANDA JENA | Research and development in science | Best Researcher Award

Homi Bhabha National Institute, IGCAR campus, India

Author Profile

Orcid 

🌱 Early Academic Pursuits

Dr. Hrudananda Jena’s journey into the world of science began with a deep-rooted curiosity for materials and their transformations. Born on December 31, 1966, in India, his academic inclination matured into a focused pursuit of knowledge in the realm of materials science. His doctoral studies at the prestigious Indian Institute of Science (IISc), Bangalore, placed him in the heart of one of India’s leading scientific institutions. There, he explored ionic transport phenomena and the structural behavior of perovskite materials — critical components in many modern technologies — through his thesis titled “Ionic transport and structural investigations on selected perovskites synthesized by wet chemical methods.”

His strong foundation in experimental and theoretical materials science was further strengthened by his postdoctoral research at Southern University, Baton Rouge, USA, from July 2005 to August 2006. There, he contributed to a United States Department of Energy (U.S-DOE-NETL) project, further honing his skills in advanced material characterization and expanding his research horizon into energy technologies.

🧪 Professional Endeavors

Dr. Jena’s professional trajectory is marked by a distinguished association with the Indira Gandhi Centre for Atomic Research (IGCAR), one of India’s premier nuclear research facilities under the Department of Atomic Energy (DAE). Currently serving as the Head of the Materials Processing Chemistry Section and holding the senior rank of Scientific Officer (H), he plays a pivotal role in pioneering material synthesis and processing techniques essential to the atomic energy program.

Simultaneously, he contributes to the academic ecosystem as a Professor in Chemical Sciences at the Homi Bhabha National Institute (HBNI), Mumbai, stationed at the IGCAR campus. His dual role as a researcher and educator underscores his commitment to advancing science both in practice and pedagogy.

From developing cutting-edge techniques in materials processing to mentoring young scientists, Dr. Jena’s role at IGCAR spans innovation, leadership, and strategic planning in material chemistry critical to India’s nuclear fuel cycle and energy future.

🔬 Contributions and Research Focus

Dr. Jena’s research revolves around materials chemistry, solid-state ionics, wet chemical synthesis, and perovskite structures. His doctoral and postdoctoral work laid the foundation for his continuing interest in ionic conductivity and material stability — topics of central importance in energy storage devices, fuel cells, and nuclear material development.

At IGCAR, he has led efforts in processing nuclear materials using innovative wet chemical routes and advanced characterization. His expertise in solid-state synthesis and chemical methods has contributed to efficient material development techniques vital for metal fuel cycles. His work supports the safe and efficient operation of fast breeder reactors and aligns with India’s long-term nuclear energy goals.

In addition to his hands-on laboratory contributions, Dr. Jena is also known for his interdisciplinary collaborations, especially those integrating chemical sciences with physics and engineering domains.

🏆 Accolades and Recognition

Dr. Jena’s academic and professional excellence has been recognized both nationally and internationally. His selection as a Senior Research Associate on a U.S. Department of Energy project is a testament to his global scientific standing. Domestically, his continuous rise within the Department of Atomic Energy, from researcher to section head and scientific officer at the highest grade, reflects the high regard in which he is held by India’s scientific community.

Moreover, his appointment as a Professor at HBNI further affirms his stature not only as a researcher but also as a thought leader and educator in chemical sciences.

🌍 Impact and Influence

Dr. Jena’s influence reaches beyond his laboratory at Kalpakkam. His work directly supports India’s strategic energy autonomy, particularly in the nuclear sector. The materials he helps develop and process are integral to fuel safety, reactor efficiency, and long-term sustainability in nuclear power generation.

As a mentor and professor, he has inspired numerous young scientists, guiding them through advanced research and helping them understand the complex interplay between chemistry and energy systems. His participation in both national and international forums adds to his impact, enabling knowledge exchange and fostering global scientific cooperation.

🧭 Legacy and Future Contributions

With decades of rich experience, Dr. Hrudananda Jena continues to be a guiding force in the field of materials chemistry. His legacy will be defined not just by the innovations he has introduced but also by the scientific culture he fosters — one grounded in curiosity, precision, and purpose.

Looking ahead, his continued contributions to the chemical sciences, particularly in sustainable nuclear materials and energy systems, are expected to remain central to India’s scientific advancement. As the global demand for clean and safe energy intensifies, researchers like Dr. Jena will be at the forefront of crafting solutions that balance innovation with safety and environmental stewardship.

His journey stands as a beacon for aspiring scientists, showing that rigorous research, global collaboration, and a commitment to national development can come together to create a meaningful and lasting impact.

Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs⁺ and Sr²⁺ from simulated solutions

Authors: M.K. Murukutti, H. Jena
Journal: Journal of Hazardous Materials
Year: 2022

Ionic transport and structural investigations on MSn(OH)₆ (M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet sonochemical methods

Authors: H. Jena, K.V.G. Kutty, T.R.N. Kutty
Journal: Materials Chemistry and Physics
Year: 2004

Innovative processing of dense LSGM electrolytes for IT-SOFCs

Authors: B. Rambabu, S. Ghosh, W. Zhao, H. Jena
Journal: Journal of Power Sources
Year: 2006

Actinide immobilization in crystalline matrix: a study of uranium incorporation in gadolinium zirconate

Authors: K.V.G. Kutty, R. Asuvathraman, R.R. Madhavan, H. Jena
Journal: Journal of Physics and Chemistry of Solids
Year: 2005

Direct single-step synthesis of phase pure zeolite Na–P1, hydroxy sodalite and analcime from coal fly ash and assessment of their Cs⁺ and Sr²⁺ removal efficiencies

Authors: M.M. Kumar, H. Jena
Journal: Microporous and Mesoporous Materials
Year: 2022