Prof. Ning Yongquan | Materials Science and Engineering | Best Researcher Award

Prof. Ning Yongquan | Materials Science and Engineering | Best Researcher Award

Northwestern Polytechnical University, China

Author Profile

Google Scholar 

🎓 Early Academic Pursuits

Yongquan Ning’s academic journey began with a strong foundation in materials science and engineering, a discipline he would eventually come to master and significantly contribute to. Born on May 14, 1982, in the People’s Republic of China, Ning’s early academic promise was evident from his undergraduate years. He completed his Bachelor of Science in Materials Science and Engineering at Nanchang Hangkong University in 2005, a period during which he was already involved in hands-on research in composite materials. His undergraduate work, which explored the fabrication and thermophysical properties of SiCp/Al composites, showcased a keen interest in materials innovation and experimentation.

Driven by a thirst for deeper knowledge and technological contribution, Ning proceeded to Northwestern Polytechnical University (NPU) in Xi’an, where he earned his Master’s degree in 2008 and subsequently a Ph.D. in 2010. His doctoral research delved into the high-temperature deformation behavior and recrystallization mechanisms of powder metallurgy (P/M) superalloys, under the mentorship of the distinguished Prof. Zekun Yao. His academic career further culminated in a postdoctoral fellowship at NPU in 2011, complemented by a year as a research associate at the prestigious Hong Kong Polytechnic University. These formative years solidified his expertise and prepared him for a lifelong contribution to materials engineering. 📘🧪

🏢 Professional Endeavors

Upon the completion of his postdoctoral training, Dr. Ning took on a faculty position at the School of Materials Science and Engineering at Northwestern Polytechnical University. From his base at NPU, he launched a range of research initiatives with significant academic and industrial relevance. Among his most enduring projects has been the study and optimization of structural-gradient materials (SGMs) used in dual-property turbine disks—an innovation pivotal to aerospace engineering.

His professional work has seamlessly blended academic inquiry with applied science. Ning has actively investigated the intricate relationships between gradient-temperature-heat-treatment parameters and their impact on the microstructure and mechanical properties of advanced alloys. His understanding of microstructure transitions, particularly the control of duplex grain regions, has enabled optimization efforts that significantly enhance the dual mechanical properties needed in high-performance turbine components.

🔬 Contributions and Research Focus

Dr. Ning’s primary research focus has revolved around the development and refinement of high-performance superalloys and structural-gradient materials. His contributions to understanding microstructural evolution during thermomechanical processing, including isothermal forging and hot compression, have offered novel insights into recrystallization behaviors and grain refinement mechanisms.

His work with powder metallurgy FGH4096 superalloys between 2006 and 2010 established foundational knowledge about the internal relationships between flow behavior and initial microstructures in HIPed (Hot Isostatically Pressed) materials. Additionally, his investigations into IN718 and GH4133A superalloys under various deformation conditions have had a lasting impact on forging technologies and alloy design strategies. 🔧🧬

🏅 Accolades and Recognition

Dr. Ning’s academic excellence has been recognized consistently throughout his educational and professional career. As a student, he was the recipient of the First-Class Scholarship from NPU for four consecutive years (2006–2009), reflecting his outstanding academic performance and research achievements. In 2008, his growing expertise was acknowledged with the Second-Class Special Scholarship from the China Air-to-Air Missile Research Institute—an endorsement of both his intellectual capacity and the practical significance of his research in national defense technology.

In 2010, he was further honored with the Second-Class Chongde Scholarship awarded by the School of Materials Science and Engineering, signifying high regard from his academic community. 🏆📜

🌍 Impact and Influence

Through his research and teaching, Dr. Ning has influenced both his peers and a new generation of materials scientists. His investigations into gradient microstructures have provided critical pathways for improving dual-property materials, which are now crucial in aerospace and energy sectors. His close collaboration with both academic and industrial institutions has helped translate complex metallurgical theory into real-world engineering applications.

Furthermore, his work has added to the global body of knowledge on powder metallurgy and thermomechanical processing, enhancing the scientific community’s ability to develop materials that are lighter, stronger, and more resilient under extreme conditions. His scientific outputs not only push the boundaries of materials performance but also contribute directly to technological competitiveness in sectors vital to national and global progress. 🌐🚀

🧭 Legacy and Future Contributions

As a scholar grounded in both theory and application, Dr. Yongquan Ning’s legacy lies in his methodical approach to solving some of the most pressing challenges in materials science. With a professional ethos rooted in curiosity, precision, and innovation, he is poised to continue contributing significantly to the development of high-performance materials for aerospace, defense, and energy systems.

Looking forward, Ning is expected to deepen his research in structural-gradient materials, possibly exploring additive manufacturing integrations and AI-driven materials design—fields that align with global trends in smart manufacturing and digital engineering. Through continued mentorship, publication, and cross-disciplinary collaboration, he stands to leave an enduring mark on both academic research and industry practices. 🔭📈

📝Notable Publications

Competition between dynamic recovery and recrystallization during hot deformation for TC18 titanium alloy

Authors: Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, K. Tan
Journal: Materials Science and Engineering: A, Vol. 635, pp. 77–85
Year: 2015

Dynamic softening behavior of TC18 titanium alloy during hot deformation

Authors: Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, H.Z. Guo
Journal: Materials & Design, Vol. 71, pp. 68–77
Year: 2015

DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures

Authors: B. Xie, H. Yu, T. Sheng, Y. Xiong, Y. Ning, M.W. Fu
Journal: Journal of Alloys and Compounds, Vol. 803, pp. 16–29
Year: 2019

Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains

Authors: B. Xie, B. Zhang, Y. Ning, M.W. Fu
Journal: Journal of Alloys and Compounds, Vol. 786, pp. 636–647
Year: 2019

Microstructure evolution and underlying mechanisms during the hot deformation of 718Plus superalloy

Authors: B. Xie, B. Zhang, H. Yu, H. Yang, Q. Liu, Y. Ning
Journal: Materials Science and Engineering: A, Vol. 784, Article 139334
Year: 2020

Prof. Hetao Chu | Material Science Research | Best Researcher Award

Prof. Hetao Chu | Material Science Research | Best Researcher Award | 3601

University of Electronic Science and Technology of China, China

Profile

Orchid

Early Academic Pursuits 🎓

Chu Hetao’s journey into the realm of engineering and advanced materials began with a strong academic foundation. His passion for material sciences and structural engineering led him to the prestigious Harbin Institute of Technology, where he pursued a Ph.D. in Engineering at the Institute of Composite Materials and Structures, School of Astronautics. His doctoral research laid a solid groundwork for his future explorations into intelligent materials, composite structures, and flexible material applications. During these formative years, he honed his expertise in developing materials that could seamlessly integrate functionality with structural integrity, a theme that would later define his career.

Professional Endeavors and Research Focus 📚

As a Professor and Doctoral Supervisor, Chu Hetao has dedicated his career to pioneering research in the field of intelligent materials, high wave-transparent structural-functional integrated composites, and flexible materials. His work is at the intersection of engineering and material science, focusing on developing innovative solutions that can be applied in various high-tech industries, including aerospace, telecommunications, and biomedical fields. His ability to bridge fundamental scientific research with practical applications has set him apart as a thought leader in his field.

His research has been widely recognized, with over 30 publications in internationally renowned journals such as Science, Advanced Functional Materials, and ACS Nano. His contributions to an English monograph further demonstrate his role in shaping the academic discourse around composite materials. Through his studies, he has not only advanced theoretical knowledge but also contributed to real-world technological advancements that push the boundaries of material performance and integration.

Contributions and Innovations 🎨

Chu Hetao’s contributions to the field extend beyond publications and theoretical advancements. His inventive spirit has led to the application and authorization of 15 Chinese invention patents and one PCT (Patent Cooperation Treaty) patent. These patents reflect his commitment to developing new materials with enhanced functionalities, whether it be through improved sensing capabilities, actuation mechanisms, or wave-transparency features.

His research has garnered significant attention from both domestic and international media, highlighting its importance and transformative potential. Additionally, he has been invited to serve as a session chair and present academic reports at numerous conferences, further cementing his reputation as a leading expert in his domain. His ability to communicate complex material science concepts effectively has made him a sought-after speaker in academic and industrial circles alike.

Accolades and Recognition 🏆

Recognizing his exceptional contributions, Chu Hetao has been the recipient of several prestigious honors and awards. He was selected for the National High-level Youth Talent Program, a testament to his outstanding research achievements and potential to drive innovation in his field. His recognition as a Reserve Candidate of Sichuan Academic and Technical Leaders and his inclusion in the “Hundred Talents Program” at the University of Electronic Science and Technology of China further underscore his influence and leadership in academia.

In 2021, he was honored with the Outstanding Young Scientist Award by the International Forum on Advanced Materials (IFAM), recognizing his groundbreaking work in material sciences. These accolades reflect the impact of his research and its significance in advancing both academic knowledge and practical applications.

Impact and Influence 🌐

Beyond his individual achievements, Chu Hetao has made substantial contributions to the academic and scientific communities. He serves as a committee member of the Sichuan Science and Technology Collaborative Innovation Promotion Association and holds editorial board positions in esteemed journals such as J. Mater. Sci. Technol., Nano. Prec. Eng., and China Plastics. His role as a reviewer for high-impact journals like Advanced Functional Materials, Biomaterials, and ACS Applied Materials & Interfaces further highlights his expertise and influence in shaping contemporary research.

Additionally, he has been appointed as a science and technology expert for the Ministry of Education, the Ministry of Science and Technology, Sichuan Province, and Chongqing City. His advisory roles demonstrate his commitment to guiding national and regional scientific advancements and ensuring that research translates into meaningful technological progress.

Legacy and Future Contributions 🌟

Looking ahead, Chu Hetao’s work is poised to leave a lasting legacy in the field of intelligent and composite materials. His research continues to push the frontiers of material science, with potential applications spanning aerospace, defense, medical technology, and beyond. By mentoring doctoral students and leading innovative projects, he is shaping the next generation of researchers who will carry forward his vision of integrating structural and functional excellence in materials.

As technological demands evolve, his expertise in flexible and wave-transparent materials will play a crucial role in advancing next-generation technologies. Whether through academic publications, patented innovations, or collaborative research initiatives, Chu Hetao remains at the forefront of engineering breakthroughs, ensuring that his contributions will continue to influence scientific progress for years to come.

📝Notable Publications

Dielectric-mechanical couple effect of COF cyanate derived from dual functions of molecular interaction and chain entanglement

Author(s): Feifan Cai, Ruoyu Chen, Qichao Dong, Wansong Gu, Kai Zheng, Longjiang Deng, Hetao Chu
Journal: Journal of Materials Science & Technology
Year: 2025

Nanozyme‐Based Stretchable Hydrogel of Low Hysteresis with Antibacterial and Antioxidant Dual Functions for Closely Fitting and Wound Healing in Movable Parts

Author(s): Yanyan Li, Peng Yu, Jie Wen, Hui Sun, Dingqian Wang, Jinming Liu, Jianshu Li, Hetao Chu
Journal: Advanced Functional Materials
Year: 2022

Chemically Grafted Nanozyme Composite Cryogels to Enhance Antibacterial and Biocompatible Performance for Bioliquid Regulation and Adaptive Bacteria Trapping

Author(s): Yanyan Li, Dingqian Wang, Jie Wen, Peng Yu, Jinming Liu, Jianshu Li, Hetao Chu
Journal: ACS Nano
Year: 2021

Ultra‐Stretchable, Variable Modulus, Shape Memory Multi‐Purpose Low Hysteresis Hydrogel Derived from Solvent‐Induced Dynamic Micelle Sea‐Island Structure

Author(s): Yanyan Li, Dingqian Wang, Jie Wen, Jinming Liu, Dongyue Zhang, Jianshu Li, Hetao Chu
Journal: Advanced Functional Materials
Year: 2021

Overall Structure Construction of an Intervertebral Disk Based on Highly Anisotropic Wood Hydrogel Composite Materials with Mechanical Matching and Buckling Buffering

Author(s): Jinming Liu, Dingqian Wang, Yanyan Li, Ziqi Zhou, Dongyue Zhang, Jianshu Li, Hetao Chu
Journal: ACS Applied Materials & Interfaces
Year: 2021