Prof. Yonglin Chen| Innovative Leadership | Best Research Article Award

Prof. Yonglin Chen| Innovative Leadership | Best Research Article Award

Anhui Jianzhu University, China

Author Profile

Scopus

🌱 Early Academic Pursuits

Chen Yonglin’s academic journey began with a Bachelor of Engineering in Mechanical Design, Manufacturing, and Automation from Shenyang Ligong University (2011–2015). His foundational studies in mechanical engineering equipped him with a robust understanding of design principles and industrial automation. He further pursued a Master’s degree in Mechanical Engineering from Inner Mongolia University of Technology (2015–2018), where he was recognized as an Outstanding Student Cadre, highlighting his leadership potential.

🌐 Professional Endeavors

Chen Yonglin embarked on his professional journey as a Junior Researcher at the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (2018–2020). During this period, he contributed to combustion performance detection projects in collaboration with China Tobacco, where he developed algorithms for image segmentation and key target detection in complex environments. His expertise in computer vision and algorithm design laid the foundation for his transition to a research-focused career.

In 2023, Chen Yonglin joined Anhui University as a Teaching and Research Faculty in the School of Electronics and Information Engineering. Here, he engages in teaching Python and artificial intelligence while conducting cutting-edge research in these fields.

🔬 Contributions and Research Focus

Chen’s research is primarily centered on artificial intelligence, medical imaging, and disease prediction. His notable contributions include a contrastive learning framework for Alzheimer’s disease classification using brain 18F-FDG PET (published in IEEE Journal of Biomedical and Health Informatics, JCR Q1, IF:7.7) and a multi-feature fusion model for Alzheimer’s prediction using EEG signals (Frontiers in Neuroscience, JCR Q2, IF:4.3). His ongoing work on multi-feature fusion learning for Alzheimer’s prediction using PET images is under review at IEEE Transactions on Medical Imaging (JCR Q1, IF:10.6).

🏆 Accolades and Recognition

Chen’s excellence has been recognized through several prestigious awards, including:

  • 🥈 1st Runner-up in the Huawei Cloud PRCV Alzheimer’s Disease Classification Challenge (2021, National Level).
  • 🥉 2nd and 3rd Prizes in the China Graduate Electronics Design Competition (North China Division, 2017 and 2018).
  • 🎖️ Award from iFLYTEK Co., Ltd. (2024).

🌟 Impact and Influence

Beyond his research, Chen has served as a reviewer for high-impact journals such as Computers in Biology and Medicine, Physics in Medicine and Biology, and Scientific Reports. His role as an organizer and judge for the Disease Prediction Challenge (2020–Present) demonstrates his commitment to advancing medical AI research. The challenge, in partnership with iFLYTEK, has drawn over 2,000 teams (10,000+ participants) from institutions such as USTC, UESTC, and JDAI.

🚀 Legacy and Future Contributions

As Chen Yonglin continues his academic and research journey, his work in artificial intelligence and medical imaging is expected to make significant contributions to early disease detection and diagnosis. With his proven expertise and leadership in medical AI, he is poised to further influence the field, driving innovations that can enhance healthcare outcomes globally.”)}

📝Notable Publications

An annotated heterogeneous ultrasound database

Authors: Yuezhe Yang, Yonglin Chen, Xingbo Dong, Zhe Jin, Yong Dai

Journal: Scientific Data

Year: 2025

Prof Jinn P. Chu | Innovative Leadership | Best Researcher Award

Prof Jinn P. Chu | Innovative Leadership | Best Researcher Award

National Taiwan University of Science and Technology, Taiwan 

Author Profile

Google Scholar 

🎓 Early Academic Pursuits

Jinn P. Chu embarked on his academic journey with a profound interest in materials science and engineering, a field that combines the complexity of physics, chemistry, and engineering to develop advanced materials. He earned his Ph.D. in Materials Science and Engineering from the University of Illinois at Urbana-Champaign (UIUC) between August 1988 and May 1992—one of the premier institutions for this discipline. His doctoral training at UIUC, surrounded by globally renowned researchers and access to cutting-edge laboratories, laid a solid foundation for a lifetime of scientific inquiry and innovation. This formative period not only shaped his technical acumen but also instilled in him a global outlook on research and its applications.

🧑‍🔬 Professional Endeavors

Prof. Chu’s professional trajectory is a testament to his dedication, vision, and leadership in both academic and administrative roles. He began his professorial career at the National Taiwan Ocean University in 1993, where he served for over a decade as Associate Professor, Professor, and eventually Chairman of the Institute of Materials Engineering. In 2007, he transitioned to the National Taiwan University of Science and Technology (Taiwan Tech), where he would leave an indelible mark. Rising through the ranks, he became Professor, Distinguished Professor, and currently serves as a Chair Professor since 2022.

His administrative leadership is equally noteworthy. From 2018 to 2021, he served as Vice President of Taiwan Tech, guiding strategic planning and research development. He also held significant roles as Dean and Vice Dean of the Office of Research and Development, and Vice Dean of the College of Engineering. Additionally, Prof. Chu directed the Applied Research Center for Thin-Film Metallic Glass, a pivotal unit fostering innovation in advanced materials.

🔬 Contributions and Research Focus

Jinn P. Chu has made pioneering contributions in the field of thin-film metallic glasses, nanostructured coatings, and advanced materials for medical, environmental, and industrial applications. His interdisciplinary research integrates materials science with engineering design to solve real-world challenges. His work on metallic glass nanotube arrays and nano-structured stainless-steel coatings is globally recognized, influencing the development of next-generation separation membranes and medical devices.

He is an inventor with over 50 patents, including breakthroughs such as thin-film metallic glass coated medical needles, tattoo needles, and diaphragms reinforced with metallic coatings. These innovations not only advance science but also demonstrate his commitment to translating lab results into practical tools that benefit society.

His scholarly impact is amplified by a number of high-impact publications in leading journals such as Nature Materials, npj Clean Water, and Materials Today. These papers have garnered significant citations, reflecting his work’s resonance with the global scientific community.

🏆 Accolades and Recognition

Prof. Chu’s illustrious career has been decorated with numerous national and international awards. He has been consistently ranked in the Top 2% of Scientists Worldwide (2021–2023) by Stanford University, acknowledging both his lifetime scientific impact and annual influence. Among his many accolades are the Outstanding Research Award from Taiwan’s Ministry of Science and Technology (2021), the Taipei Tech Distinguished Alumni Award (2021), and two-time National Innovation Awards in 2017 and 2019.

His ingenuity was also recognized globally when he received two silver medals at the Concours Lépine International in Paris in 2018 and an ACS Award at Japan Nano Tech the same year. These honors validate his international stature in materials innovation.

His service to the scientific community is equally commendable. He served as President of the Taiwan Association for Coatings and Thin Films Technology (TACT) and is currently Vice President of the Materials Research Society-Taiwan (MRS-T). His editorial work includes roles as Associate Editor of the AVS Journal of Vacuum Science and Technology, and Editorial Board Member of Thin Solid Films.

🌏 Impact and Influence

Jinn P. Chu has had an enormous influence on both academic research and industry collaboration. He has played key roles in major projects with international and national corporations, such as Foxlink Precision Industry, Dupont Taiwan, and Sino MG Technology, and has participated in EU research initiatives like the nanoCOOL project under FP7. His efforts have bridged the gap between fundamental research and industrial application, reinforcing the relevance of academic expertise in real-world innovation.

Moreover, his impact extends through his mentorship. As a professor and former administrator, he has shaped the careers of numerous students, postdocs, and junior researchers. His work ethic, integrity, and passion have left a lasting impression on Taiwan’s materials science landscape and beyond.

🌟 Legacy and Future Contributions

As he continues his tenure as a Chair Professor at Taiwan Tech, Prof. Chu remains a beacon of inspiration in his field. His legacy is built not only on his technical achievements but also on his role as a visionary leader, innovative researcher, and dedicated educator. Looking ahead, he is poised to expand his work on nanostructured functional coatings, sustainable materials, and biomedical applications, shaping the next chapter in materials engineering.

With his eyes firmly set on solving emerging global challenges—be it in healthcare, sustainability, or advanced manufacturing—Prof. Jinn P. Chu stands as a paragon of scientific excellence whose work will continue to influence generations of researchers and innovators. 🚀

Mechanisms of deodorizing rapeseed oil with ethanol steam at a low temperature: A focus on free fatty acids, tocopherols, and phytosterols

Authors: Dong, Yiyang; Liu, Fangrong; Li, Wenlin; Wang, Chengming
Journal: Food Chemistry
Year: 2025

 Bleaching of Idesia polycarpa Maxim. Oil Using a Metal-Organic Framework-Based Adsorbent: Kinetics and Adsorption Isotherms

Authors: Dong, Yiyang; Wang, Chengming; Liu, Fangrong; Niu, Aifeng
Journal: Foods
Year: 2025

Prof Jinn P. Chu | Innovative Leadership | Best Researcher Award

Prof Jinn P. Chu | Innovative Leadership | Best Researcher Award

National Taiwan University of Science and Technology, Taiwan

Author Profile

Orchid 

🎓 Early Academic Pursuits: The Spark of Scientific Excellence

Dr. Jinn P. Chu’s academic journey began with his doctoral studies at one of the world’s most prestigious engineering institutions — the University of Illinois at Urbana-Champaign (UIUC), where he pursued a Ph.D. in Materials Science and Engineering (MSE) from August 1988 to May 1992. This formative period laid the foundation for his lifelong fascination with materials, especially thin-film technologies and metallic glasses. During this time, he honed his expertise in materials behavior, surface modification, and nanostructure fabrication, setting the stage for the exceptional academic and research career that would follow.

🏛️ Professional Endeavors: Climbing the Academic Ladder

After obtaining his doctorate, Dr. Chu returned to Taiwan and began his academic career at the National Taiwan Ocean University in 1993. Over the next 14 years, he rose through the ranks — from Associate Professor to Professor and Chair of the Institute of Materials Engineering. In 2007, he joined the Department of Materials Science and Engineering (MSE) at the National Taiwan University of Science and Technology (Taiwan Tech), marking the beginning of an era defined by leadership and innovation.

His administrative capabilities were quickly recognized: he held multiple leadership roles at Taiwan Tech, including Vice Dean of the College of Engineering, Dean and Vice Dean of the Office of Research and Development, and even served as Vice President from 2018 to 2021. His deep involvement in institutional growth reflects a commitment not just to research, but also to educational and organizational excellence. Since 2022, he has been serving as a Chair Professor — a position that acknowledges both his stature and sustained impact in the field.

🔬 Contributions and Research Focus: The Art of Metallic Glass

Dr. Chu’s work focuses predominantly on thin-film metallic glasses, an area in which he is considered a global pioneer. His research bridges basic materials science and real-world applications, particularly in fields such as energy, healthcare, biosensing, optoelectronics, and nanotechnology.

Among his most impactful works is the development of metallic glass nanotube arrays, which have proven useful in creating highly sensitive biosensors and flexible electronics. His research articles, such as those published in Nature Materials, Materials Today, npj Clean Water, and ACS Applied Materials & Interfaces, demonstrate the range and depth of his scientific explorations — from superelasticity to high-performance separation membranes.

He has also made significant strides in industry-relevant research, acting as Principal Investigator (PI) for collaborations with companies like Foxlink Precision Industry, Dupont Taiwan, and Sino MG Technology. Moreover, his co-leadership in the EU-funded nanoCOOL project highlights his global R&D reach.

🏅 Accolades and Recognition: A Life of Achievement

Dr. Chu’s extensive list of awards is a testament to his academic excellence and innovation. He has repeatedly appeared in the Top 2% Most Influential Scientists rankings by Stanford University (2021–2023), signaling consistent global impact. He has also received the Outstanding Research Award from Taiwan’s Ministry of Science and Technology, the Taipei Tech Distinguished Alumni Award, and the Tong Ho Steel Foundation Award.

In the realm of invention and innovation, Dr. Chu’s contributions have earned him multiple national innovation awards, two silver medals at the Concours Lépine International in Paris, and accolades from the American Chemical Society during Japan’s nano tech event.

His patent portfolio (50 and counting) includes significant breakthroughs such as needle-sharpness preservation technologies and nano-structured medical tools, which further illustrate his ingenuity and practical focusImpact and Influence: Shaping the Global Materials Community

Beyond his personal research, Dr. Chu has been a pillar in the international materials science community. He has served as Vice President and Fellow of the Materials Research Society–Taiwan (MRS-T), Chair of the AVS-Taiwan Chapter, and President of the Taiwan Association for Coatings and Thin Films Technology (TACT).

He also contributes to the academic publishing world as Associate Editor for the AVS Journal of Vacuum Science and Technology, and as a longstanding editorial board member of Thin Solid Films. These roles underscore his influence in shaping the direction of scholarly discourse in materials science.

As a respected reviewer for major national and international funding bodies — including Taiwan’s MOST and Germany’s DFG — Dr. Chu has helped guide the development of research agendas far beyond his own lab.

🌟 Legacy and Future Contributions: A Vision Still Unfolding

With over 230 peer-reviewed publications, 6,500+ citations, and a Google Scholar H-index of 45, Dr. Chu’s academic footprint is as expansive as it is impactful. His work continues to inspire a new generation of materials scientists, particularly in the innovative use of metallic glasses in next-gen technologies.

As a mentor, leader, and visionary, Dr. Jinn P. Chu’s legacy is firmly established. Yet, his recent works, such as the 2025 publications on energy harvesting nanogenerators and icephobic surfaces, suggest that his most transformative contributions may still be ahead. In the intersection of academia, industry, and innovation, he remains a dynamic force propelling materials science into the future. 🧪🌍

📝Notable Publications

Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum

Author(s): Getinet Asrat Mengesha, Jinn Chu, Bih-Show Lou, Jyh-Wei Lee

Journal: Metals
Year: 2020

Dr. Hongbang shao | Innovative Leadership | Best Researcher Award

Dr. Hongbang shao | Innovative Leadership | Best Researcher Award

Light Alloy Research Institute, Central South University, China

Profile

Scopus 

Early Academic Pursuits ✨

Hongbang Shao’s journey into the world of engineering and materials science began with a deep-rooted passion for understanding the fundamental properties of light alloys. From the early stages of his academic career, he displayed an innate curiosity about how metals could be manipulated at the microscopic level to achieve superior strength and performance. His academic pursuits culminated in earning a Doctor of Engineering degree, where he honed his expertise in alloy strengthening strategies and advanced manufacturing techniques. Throughout his formative years, he was actively involved in research projects that laid the foundation for his future work in industrial applications.

Professional Endeavors 💪

Currently serving as a lecturer at the Light Alloy Research Institute, Central South University, Hongbang Shao has dedicated his career to pushing the boundaries of material science. His research focuses on the development and manufacturing of high-performance thin-walled components, a critical area in aerospace and automotive industries. He has actively contributed to six major research projects funded by the National Natural Science Foundation of China and the National Key R&D Program of China, as well as industry-sponsored initiatives. These projects have played a pivotal role in bridging the gap between theoretical advancements and practical applications, demonstrating the real-world impact of his work.

Contributions and Research Focus 📚

One of Shao’s significant contributions lies in the development of ultra-high strength Al-10.8Zn-2.6-Mg-Cu-Zr-Sc alloy rods, which have shown remarkable mechanical performance under various manufacturing conditions. By utilizing extrusion combined with aging, he meticulously studied the effects of extrusion ratios on the microstructural evolution, recrystallization behaviors, and texture characteristics of these alloys. His findings indicated that an extrusion ratio of 25 resulted in exceptional material properties, boasting a tensile strength of 836 MPa and a yield strength of 835 MPa. These groundbreaking results have been published in Materials Science and Engineering A, reflecting the significance of his research within the scientific community.

Beyond alloy development, his research delves into advanced manufacturing technologies, including strengthening and toughening mechanisms, microstructure characterization, and mechanical performance optimization. His expertise in these domains has led to 16 publications in renowned scientific journals, along with the authorization of two Chinese invention patents and an additional five patents in the pipeline. His work is not only academically rigorous but also practically viable, as it has been successfully implemented in industrial applications such as rocket cabins and automobile bodies.

Accolades and Recognition 🏆

Hongbang Shao’s research has garnered widespread recognition, positioning him as a leading figure in light alloy advancements. With a citation index of 7, his work continues to influence researchers and industry professionals alike. His technical achievement registration further underscores his commitment to innovation. While he has not yet been appointed to editorial boards or professional memberships, his growing body of work speaks volumes about his contributions to materials science. The application of his research findings in industrial manufacturing highlights his ability to bridge the gap between academia and industry, a feat that is often challenging in the field of engineering.

Impact and Influence ⚖️

The impact of Shao’s research extends far beyond the confines of academic journals. His work has contributed to the enhancement of material properties essential for aerospace and automotive applications, ensuring structural reliability and performance efficiency. By focusing on strengthening strategies for light alloys, he has played an instrumental role in advancing materials that are not only lightweight but also incredibly durable. His consultancy work in four industry-sponsored projects further illustrates his ability to translate scientific insights into tangible engineering solutions.

His commitment to scientific progress is also evident in his mentorship of students and researchers who aspire to delve into material science. Through his lectures and research guidance, he has nurtured the next generation of engineers, instilling in them a passion for discovering novel solutions in alloy technology.

Legacy and Future Contributions 🌟

As Hongbang Shao continues to expand his research horizon, his future contributions are poised to leave a lasting impact on the field of light alloys and advanced manufacturing. With ongoing research projects and a strong foundation of industrial applications, he is set to further refine strengthening mechanisms and push the limits of high-performance materials. His future work may involve exploring novel alloy compositions, integrating smart manufacturing techniques, and developing eco-friendly production methods that align with sustainability goals.

His dedication to scientific exploration and his ability to seamlessly integrate theoretical advancements with industrial applications place him among the promising innovators in material science. By continuously striving for excellence, Hongbang Shao is paving the way for groundbreaking advancements that will shape the future of high-performance alloys, ultimately contributing to the evolution of aerospace and automotive industries.

📝Notable Publications

Effect of extrusion ratio on microstructure evolution and mechanical properties of ultra-high strength Al-Zn-Mg-Cu-Zr-Sc alloy

Authors: Junhua Cheng, Hongbang Shao, Jinchuan Wen, Yukuan Huang, Yuanchun Huang
Journal: Materials Science and Engineering A
Year: 2025

Dr. Yangyang Xin | Team Building and Team Management | Best Researcher Award

Dr. Yangyang Xin | Team Building and Team Management | Best Researcher Award 

Northwestern Polytechnical University, China 

Profile 

Orcid 

🎓 Early Academic Pursuits

Yangyang Xin’s academic journey began at Northwestern Polytechnical University, where he pursued a deep interest in chemistry and chemical engineering. His early dedication to the field was evident as he consistently excelled in his studies, securing the prestigious first-class academic scholarship and being honored as an outstanding graduate student. These achievements laid the foundation for his future research endeavors and set the stage for his commitment to advancing the field of chemical engineering.

🧪 Professional Endeavors and Research Focus

Currently a PhD candidate at the School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Yangyang Xin is deeply involved in cutting-edge research that focuses on gas adsorption in porous liquids and epoxy resin composites. His work is at the forefront of developing innovative solutions to some of the most pressing challenges in chemical engineering, particularly in the area of CO2 capture.

One of his notable research projects includes the development of a novel “pore-carrier transfer” strategy for the preparation of porous liquids, which has shown significant promise for efficient CO2 capture. This strategy, which was first introduced by Yangyang, has the potential to revolutionize the field by enabling the creation of porous platforms based on UiO-66-NH2 and MXene, facilitating the effective utilization of sorption sites. This groundbreaking approach offers a novel method for developing porous liquids (PLs) that can be applied to various gas sorption applications.

🏆 Accolades and Recognition

Throughout his academic career, Yangyang Xin has received several accolades that reflect his commitment to excellence in research. His work has been published in top-tier scientific journals, including the Chemical Engineering Journal, Nano Research, and the New Journal of Chemistry. These publications highlight his significant contributions to the field and underscore his role as an emerging leader in chemical engineering research.

Yangyang’s most recent publication in the Chemical Engineering Journal (2024) presents his pioneering “pore-carrier transfer” strategy, which has garnered attention for its potential to enhance CO2 capture efficiency. His other publications also demonstrate a consistent focus on developing low-viscosity porous liquids and post-synthetic modification techniques to improve gas adsorption properties.

🌍 Impact and Influence

Yangyang Xin’s research is not just academically rigorous; it has profound implications for addressing global environmental challenges. His focus on CO2 capture aligns with the urgent need to mitigate climate change by reducing greenhouse gas emissions. The innovative strategies he has developed for constructing porous liquids are likely to influence future research in the field and could lead to practical applications in industrial processes aimed at reducing carbon footprints.

Furthermore, Yangyang’s work contributes to the broader scientific community by providing new methodologies that other researchers can build upon. His “like dissolves like” approach to constructing low-viscosity porous liquids, for instance, is a generalizable strategy that can be applied to various materials, thereby expanding the scope of research in this area.

👥 Legacy and Future Contributions

Looking ahead, Yangyang Xin is poised to continue making significant contributions to the field of chemical engineering. His research on porous liquids and CO2 capture is just the beginning of what promises to be a long and impactful career. As he progresses in his academic and professional journey, Yangyang aims to further explore the potential of porous materials and two-dimensional materials in gas sorption applications. His goal is to develop more efficient and sustainable methods for capturing greenhouse gases, thereby contributing to global efforts to combat climate change.

In addition to his research, Yangyang is committed to mentoring the next generation of scientists. He recognizes the importance of sharing knowledge and fostering a collaborative research environment. His future endeavors will likely include collaborative projects with other researchers, as well as contributions to academic and professional communities through conferences, publications, and teaching.

🌟 Highlighting a Bright Future

Yangyang Xin’s work in chemical engineering is marked by innovation, dedication, and a clear vision for the future. His early achievements and ongoing research have already begun to make a significant impact on the field. As he continues to explore new frontiers in gas adsorption and porous liquids, Yangyang is set to leave a lasting legacy that will benefit both the scientific community and the world at large.

With his sights set on solving some of the most challenging problems in environmental science and engineering, Yangyang Xin is undoubtedly a researcher to watch. His contributions not only advance the understanding of chemical processes but also offer practical solutions that can help create a more sustainable future.

Publications 

Latent heat type nanofluid based on MXene and MoS2 modified hierarchical structured phase change nanocapsules for sustainable and efficient light-heat conversion

Authors: Not provided

Journal: Chemical Engineering Journal

Year: 2024

Insight into the mechanical properties and thermal expansion behavior of epoxy nanocomposites reinforced with multi‐walled carbon nanotube solvent‐free nanofluids

Authors: Not provided

Journal: Polymer Composites

Year: 2024

Robust and stretchable Ti3C2Tx MXene/PEI conductive composite dual-network hydrogels for ultrasensitive strain sensing

Authors: Not provided

Journal: Composites Part A: Applied Science and Manufacturing

Year: 2024

A transparent and robust ionogel prepared via phase separation for sensitive strain sensing

Authors: Not provided

Journal: Journal of Materials Chemistry

Year: 2024

Preparation of tough and stiff ionogels via phase separation

Authors: Not provided

Journal: Materials Horizons

Year: 2024

Dr. Min Pan | Innovative Leadership | Best Researcher Award

Dr. Min Pan | Innovative Leadership | Best Researcher Award

Hong Kong Metropolitan University, Hong Kong

Profile 

Scopus 

🌱 Early Academic Pursuits

Dr. Min PAN, known professionally as Dr. Livia PAN, embarked on her academic journey with a passion for environmental science and soil pollution. She earned her Ph.D. from The Chinese University of Hong Kong, one of the most prestigious institutions in Asia. Her doctoral research laid a solid foundation for her future work, focusing on the intricate dynamics between soil chemistry and environmental pollutants. Her early academic pursuits were marked by an unwavering commitment to understanding and mitigating the impact of human activities on the environment, particularly through the lens of soil science.

🏫 Professional Endeavors

Following the completion of her Ph.D., Dr. PAN joined Hong Kong Metropolitan University as a Senior Lecturer. Her role at the university has allowed her to blend teaching with research, inspiring the next generation of environmental scientists while pushing the boundaries of knowledge in her field. Her teaching philosophy revolves around fostering critical thinking and problem-solving skills in her students, ensuring they are well-equipped to tackle the environmental challenges of the future.

In addition to her teaching responsibilities, Dr. PAN has taken on significant research projects as the Principal Investigator (PI). She has successfully led two Faculty Development Scheme (FDS) projects and two internal projects, securing a total funding of approximately HK$ 2 million. These projects have focused on various aspects of environmental pollution, particularly the interaction between pollutants and soil systems, and have contributed valuable insights into the field.

🔬 Contributions and Research Focus

Dr. PAN’s research is characterized by its interdisciplinary approach, integrating environmental science, soil chemistry, and pollution control. She has a strong focus on the fate and transport of pollutants in the environment, particularly antibiotics and other contaminants in soil and water systems. Her work is essential in understanding how these pollutants move through ecosystems and affect both human health and the environment.

One of her notable research areas is the phytoremediation of contaminated soils, where she explores the use of plants to remove, degrade, or contain harmful pollutants. This research has significant implications for sustainable agriculture and environmental restoration, particularly in regions affected by heavy industrial activities and intensive farming practices.

Her research outputs include 27 papers published in top-tier international journals, all of which are Q1-ranked, and a book chapter that consolidates her expertise in environmental pollution and soil science. Dr. PAN’s work is highly regarded in the scientific community, contributing to our understanding of environmental pollution and offering practical solutions for its mitigation.

🏅 Accolades and Recognition

Dr. PAN’s contributions to environmental science have not gone unnoticed. In 2023, she was recognized by Stanford University as one of the top 2% of the most-cited scientists worldwide, a testament to the impact and relevance of her work. This recognition places her among the global elite in environmental science, highlighting her research’s influence on her field.

Her scientific achievements are further evidenced by her appointment to the editorial boards of several prestigious international journals. These roles allow her to shape the direction of research in environmental science and soil pollution, ensuring that high-quality, impactful research is disseminated to the global scientific community.

🌍 Impact and Influence

Beyond her academic achievements, Dr. PAN’s work has had a tangible impact on environmental policy and practice. Her research on the interaction between soil and pollutants has provided critical insights that have informed environmental management strategies, particularly in the areas of sustainable agriculture and pollution control. Her consultancy work has also enabled her to apply her expertise to real-world challenges, working with industry partners to develop innovative solutions for environmental sustainability.

As a mentor and supervisor, Dr. PAN has guided three MPhil students through their research journeys, imparting her knowledge and fostering their development as independent researchers. Her influence extends beyond her immediate academic environment, inspiring young scientists to pursue careers in environmental science and contribute to solving the pressing environmental issues of our time.

🌟 Legacy and Future Contributions

Looking ahead, Dr. PAN’s future contributions to environmental science are poised to be as impactful as her past work. She continues to push the boundaries of knowledge in her field, with ongoing research projects that promise to yield new insights into the complex interactions between pollutants and the environment.

Her legacy will be one of innovation, leadership, and dedication to environmental sustainability. Through her research, teaching, and mentoring, Dr. PAN is shaping the future of environmental science, leaving an indelible mark on the field and contributing to a more sustainable world for future generations.

📚 Conclusion

Dr. Min PAN, or Dr. Livia PAN as she is known in the academic world, is a distinguished figure in environmental science. Her journey from a passionate Ph.D. student to a globally recognized researcher and educator is a testament to her dedication, expertise, and impact on the field of environmental pollution and soil science. As she continues to lead research initiatives, mentor young scientists, and contribute to environmental sustainability, her work will undoubtedly continue to influence the field and inspire future generations of environmental scientists.

Publications 

Highly porous NiFe-mixed metal oxides derived from calcinated layered double hydroxide for efficient antibiotics removal

    • Authors: Li, Z., Chen, X., Huang, G., Pan, M., Bi, J.
    • Journal: Applied Surface Science
    • Year: 2024

Root chemistry and microbe interactions contribute to metal(loid) tolerance of an aromatic plant – Vetiver grass

    • Authors: Li, H., Rao, Z., Sun, G., Wang, J.-J., Chen, X.W.
    • Journal: Journal of Hazardous Materials
    • Year: 2024

Assessing the Impact of Sewage Sludge-Chinese Medicinal Herbal Residues-Biochar Amendment on Antibiotic Resistance Genes in Soil-Plant Systems

    • Authors: Pan, M., Sham, Y.T.
    • Journal: Journal of Soil Science and Plant Nutrition
    • Year: 2024

Advances in Microfluidic Paper-Based Analytical Devices (µPADs): Design, Fabrication, and Applications

    • Authors: Chen, J.L., Njoku, D.I., Tang, C., Pan, M., Tam, N.F.-Y.
    • Journal: Small Methods
    • Year: 2024

Efficient Hydrogen Peroxide Photosynthesis over CdS/COF for Water Disinfection: The S-Scheme Pathway, Oxygen Adsorption, and Reactor Design

    • Authors: He, Y., Zhao, J., Sham, Y.-T., Wong, P.K., Bi, J.
    • Journal: ACS Sustainable Chemistry and Engineering
    • Year: 2023

Dr. Abdulfatai Ajiboye | Decision-making and Problem-solving | Outstanding Scientist Award

Dr. Abdulfatai Ajiboye | Decision-making and Problem-solving | Outstanding Scientist Award

Dr. Abdulfatai Ajiboye, Kwara State University, Malete, Nigeria

🔗 Professional Profiles

Education and Academic Journey 📚

Dr. Ajiboye obtained his Ph.D. in Chemistry from the University of Lagos, specializing in Natural Products/Medicinal Chemistry and Organic Chemistry. His research during this time focused on the isolation, purification, and structural modification of bioactive compounds from medicinal plants. He honed his skills in Nuclear Magnetic Resonance (NMR) spectroscopy, mass spectrometry, and high-performance liquid chromatography (HPLC) for the analysis and quantification of phytochemicals.

Professional Experience 💼

During his tenure as a Visiting Research Scholar at the National Centre for Products Research, School of Pharmacy, University of Mississippi, USA, Dr. Ajiboye gained valuable experience in isolating and characterizing bioactive compounds using advanced spectroscopic techniques like 1D&2D NMR and HRMS.

Research Interests and Contributions 🔬

Dr. Ajiboye’s research interests span molecular networking, virtual screening, and the synthesis of small organic molecules with potential biological properties. He has made significant contributions to the fields of natural products chemistry, organic synthesis, and medicinal chemistry, particularly in exploring the antihyperglycemic, antioxidant, antimicrobial, and cytotoxic properties of phytochemicals from plants.

Teaching and Mentoring 🎓

As an educator, Dr. Ajiboye is actively involved in teaching and supervising both undergraduate and postgraduate students. His teaching duties include courses such as Basic Organic Chemistry, Experimental Chemistry, Polymer Chemistry, Organic Reactions, and Mechanisms, among others. He is also engaged in supervising research projects at various levels, nurturing the next generation of scientists.

Community Engagement and Outreach 🌍

Beyond academia, Dr. Ajiboye is committed to community development initiatives, leveraging his expertise to contribute positively to society.

Skills and Expertise 💡

Dr. Ajiboye possesses a diverse skill set including proficiency in operating advanced analytical instruments like NMR, HRMS, LC-MS, GC-MS, and HPLC. He is adept at grant writing, science communication, and conducting in silico analyses for computational research.

Dr. AbdulFatai Temitope Ajiboye’s work reflects a deep-seated passion for scientific exploration, education, and making impactful contributions to the field of Chemistry.

Publication Top Noted

Paper Title: Anti-Diabetic Efficacy and Phytochemical Screening of Methanolic Leaf Extract of Pawpaw (Carica papaya) Grown in North Central Nigeria.
  • Authors: Ayorinde Victor Ogundele, Kabir Opeyemi Otun, Abdulfatai Ajiboye, Bolatito Eunice Olanipekun, Rasheed Bolaji Ibrahim
  • Journal: Journal of the Turkish Chemical Society Section A: Chemistry
  • Year: 2017
  • Citations: 21
Paper Title: Chemical composition, antioxidant and antimicrobial potentials of Icacina trichantha Oliv. leaf extracts
    • Authors: Kabir O Otun, Damilola B Onikosi, Abdulfatai T Ajiboye, Akeem A Jimoh
    • Journal: Kabir O Otun, Damilola B Onikosi, Abdulfatai T Ajiboye, Akeem A Jimoh
    • Year: 2015
    • Citations: 18
Paper Title: Recent advances in the synthesis of various analogues of MOF-based nanomaterials: A mini-review
    • Authors:Kabir Opeyemi Otun, Sefiu Olaitan Amusat, Ismaila Taiwo Bello, Jibril Abdulsalam, Abdulfatai Temitope Ajiboye, Aliu Adeniyi Adeleke, Samsudeen Olanrewaju Azeez
    • Source: Inorganica Chimica Acta
    • Year: 2022
    • Citations: 13
Paper Title: The studies of antioxidant and antimicrobial potentials of the leaf extract of Bauhinia monandra plant
    • Authors: AT Ajiboye, MD Musa, KO Otun, AA Jimoh, AT Bale, SO Lawal, MT Arowona
    • Source:Nat Prod Chem Res
    • Year: 2015
    • Citations: 11
Paper Title: Sorption study of Cd (II) from aqueous solution using activated carbon prepared from Vitellaria paradoxa shell
    • Authors:AA Jimoh, GB Adebayo, KO Otun, AT Ajiboye, AT Bale, W Jamiu, FO Alao
    • Journal: J Bioremed Biodeg
    • Year: 2015