Prof. Ning Yongquan | Materials Science and Engineering | Best Researcher Award

Prof. Ning Yongquan | Materials Science and Engineering | Best Researcher Award

Northwestern Polytechnical University, China

Author Profile

Google Scholar 

🎓 Early Academic Pursuits

Yongquan Ning’s academic journey began with a strong foundation in materials science and engineering, a discipline he would eventually come to master and significantly contribute to. Born on May 14, 1982, in the People’s Republic of China, Ning’s early academic promise was evident from his undergraduate years. He completed his Bachelor of Science in Materials Science and Engineering at Nanchang Hangkong University in 2005, a period during which he was already involved in hands-on research in composite materials. His undergraduate work, which explored the fabrication and thermophysical properties of SiCp/Al composites, showcased a keen interest in materials innovation and experimentation.

Driven by a thirst for deeper knowledge and technological contribution, Ning proceeded to Northwestern Polytechnical University (NPU) in Xi’an, where he earned his Master’s degree in 2008 and subsequently a Ph.D. in 2010. His doctoral research delved into the high-temperature deformation behavior and recrystallization mechanisms of powder metallurgy (P/M) superalloys, under the mentorship of the distinguished Prof. Zekun Yao. His academic career further culminated in a postdoctoral fellowship at NPU in 2011, complemented by a year as a research associate at the prestigious Hong Kong Polytechnic University. These formative years solidified his expertise and prepared him for a lifelong contribution to materials engineering. 📘🧪

🏢 Professional Endeavors

Upon the completion of his postdoctoral training, Dr. Ning took on a faculty position at the School of Materials Science and Engineering at Northwestern Polytechnical University. From his base at NPU, he launched a range of research initiatives with significant academic and industrial relevance. Among his most enduring projects has been the study and optimization of structural-gradient materials (SGMs) used in dual-property turbine disks—an innovation pivotal to aerospace engineering.

His professional work has seamlessly blended academic inquiry with applied science. Ning has actively investigated the intricate relationships between gradient-temperature-heat-treatment parameters and their impact on the microstructure and mechanical properties of advanced alloys. His understanding of microstructure transitions, particularly the control of duplex grain regions, has enabled optimization efforts that significantly enhance the dual mechanical properties needed in high-performance turbine components.

🔬 Contributions and Research Focus

Dr. Ning’s primary research focus has revolved around the development and refinement of high-performance superalloys and structural-gradient materials. His contributions to understanding microstructural evolution during thermomechanical processing, including isothermal forging and hot compression, have offered novel insights into recrystallization behaviors and grain refinement mechanisms.

His work with powder metallurgy FGH4096 superalloys between 2006 and 2010 established foundational knowledge about the internal relationships between flow behavior and initial microstructures in HIPed (Hot Isostatically Pressed) materials. Additionally, his investigations into IN718 and GH4133A superalloys under various deformation conditions have had a lasting impact on forging technologies and alloy design strategies. 🔧🧬

🏅 Accolades and Recognition

Dr. Ning’s academic excellence has been recognized consistently throughout his educational and professional career. As a student, he was the recipient of the First-Class Scholarship from NPU for four consecutive years (2006–2009), reflecting his outstanding academic performance and research achievements. In 2008, his growing expertise was acknowledged with the Second-Class Special Scholarship from the China Air-to-Air Missile Research Institute—an endorsement of both his intellectual capacity and the practical significance of his research in national defense technology.

In 2010, he was further honored with the Second-Class Chongde Scholarship awarded by the School of Materials Science and Engineering, signifying high regard from his academic community. 🏆📜

🌍 Impact and Influence

Through his research and teaching, Dr. Ning has influenced both his peers and a new generation of materials scientists. His investigations into gradient microstructures have provided critical pathways for improving dual-property materials, which are now crucial in aerospace and energy sectors. His close collaboration with both academic and industrial institutions has helped translate complex metallurgical theory into real-world engineering applications.

Furthermore, his work has added to the global body of knowledge on powder metallurgy and thermomechanical processing, enhancing the scientific community’s ability to develop materials that are lighter, stronger, and more resilient under extreme conditions. His scientific outputs not only push the boundaries of materials performance but also contribute directly to technological competitiveness in sectors vital to national and global progress. 🌐🚀

🧭 Legacy and Future Contributions

As a scholar grounded in both theory and application, Dr. Yongquan Ning’s legacy lies in his methodical approach to solving some of the most pressing challenges in materials science. With a professional ethos rooted in curiosity, precision, and innovation, he is poised to continue contributing significantly to the development of high-performance materials for aerospace, defense, and energy systems.

Looking forward, Ning is expected to deepen his research in structural-gradient materials, possibly exploring additive manufacturing integrations and AI-driven materials design—fields that align with global trends in smart manufacturing and digital engineering. Through continued mentorship, publication, and cross-disciplinary collaboration, he stands to leave an enduring mark on both academic research and industry practices. 🔭📈

📝Notable Publications

Competition between dynamic recovery and recrystallization during hot deformation for TC18 titanium alloy

Authors: Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo, J.L. Zhang, K. Tan
Journal: Materials Science and Engineering: A, Vol. 635, pp. 77–85
Year: 2015

Dynamic softening behavior of TC18 titanium alloy during hot deformation

Authors: Y.Q. Ning, B.C. Xie, H.Q. Liang, H. Li, X.M. Yang, H.Z. Guo
Journal: Materials & Design, Vol. 71, pp. 68–77
Year: 2015

DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures

Authors: B. Xie, H. Yu, T. Sheng, Y. Xiong, Y. Ning, M.W. Fu
Journal: Journal of Alloys and Compounds, Vol. 803, pp. 16–29
Year: 2019

Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains

Authors: B. Xie, B. Zhang, Y. Ning, M.W. Fu
Journal: Journal of Alloys and Compounds, Vol. 786, pp. 636–647
Year: 2019

Microstructure evolution and underlying mechanisms during the hot deformation of 718Plus superalloy

Authors: B. Xie, B. Zhang, H. Yu, H. Yang, Q. Liu, Y. Ning
Journal: Materials Science and Engineering: A, Vol. 784, Article 139334
Year: 2020

Prof. Guorui Xu | Strategy and power management | Best Researcher Award

Prof. Guorui Xu | Strategy and power management | Best Researcher Award

North China Electric Power University, China

Author Profile

Scopus 

🎓 Early Academic Pursuits

Professor Guorui Xu’s journey into the realm of electrical engineering began with a solid foundation laid at the Taiyuan University of Technology, where he earned his Bachelor of Engineering in 2007. Motivated by a deep interest in electric machinery, he continued his education at North China Electric Power University (NCEPU) in Beijing. There, he earned both his Master of Engineering in 2010 and Ph.D. in Electric Machines and Apparatus in 2014. These formative years not only provided him with a robust theoretical understanding of electrical systems but also immersed him in research projects that would later form the backbone of his professional legacy. His academic path reflected an unwavering commitment to excellence, setting the stage for a lifelong dedication to innovation in the field of power engineering.

🏛️ Professional Endeavors

Following his doctoral studies, Dr. Xu joined NCEPU as a lecturer, quickly earning recognition for his insightful research and effective teaching methods. After three years of service in this role, he was promoted to Associate Professor, where he remained for five years. Today, he serves as a Professor and Ph.D. Supervisor at NCEPU, continuing to mentor young scholars and lead pioneering research in synchronous generators and power control. In his role, Professor Xu actively engages in large-scale projects that bridge academia with industry, demonstrating a unique ability to translate complex theories into practical, impactful innovations. His position also allows him to contribute to the strategic development of China’s electrical power sector through leadership in research, innovation, and policy advising.

🔬 Contributions and Research Focus

Professor Xu’s research primarily revolves around the development, operation, and control of new-type synchronous generators and condensers—a critical domain within power systems engineering. His scholarly output includes over 150 publications, with 66 indexed in SCI and Scopus databases, illustrating his active engagement with the global academic community. One of his notable papers was recognized as a Top Cited Article by IET Electric Power Applications, underscoring the relevance and resonance of his work among peers.

He has led and participated in 30 major research projects, many of which are supported by competitive funding sources, amounting to over RMB 25 million. His technical expertise is further validated by an impressive portfolio of 29 patents in electric machinery, of which 24 are Chinese invention patents that directly contribute to the innovation ecosystem in the power sector. Additionally, his research extends into electromagnetic force characteristics, transient behavior analysis, and control strategy optimization for dual-excited and doubly-fed machines.

🏅 Accolades and Recognition

Over the years, Professor Xu has received numerous prestigious honors that recognize his contributions to electrical engineering. Notably, he has been awarded two Provincial and Ministerial Science and Technology Progress Awards and five industry and association-level prizes. Two of his papers received the Outstanding Paper Award from the IEEE Industry Applications Society, a testament to their innovation and technical rigor.

In recognition of his service to the academic and professional community, he serves as a Young Editorial Board Member for the journal Large Electric Machine and Hydraulic Turbine and as a Technical Program Committee Member for the 2024 Asia Conference on Energy and Electrical Engineering. He is also a Senior Member of IEEE, a Committee Member of the Chinese Society for Electrical Engineering (CSEE), and an active participant in the Large Electrical Machinery Committee of the Chinese Society for Electrical Technology.

🌐 Impact and Influence

Professor Xu’s impact is visible both in academic circles and in the real-world application of his research. With a Web of Science citation index of over 508, his work influences fellow researchers and practitioners worldwide. His innovations have directly contributed to improving the efficiency, reliability, and sustainability of power systems in China and beyond. He has also served as the team leader for the Outstanding Contribution Team in the Proceedings of the Chinese Society for Electrical Engineering (CSEE), further amplifying his influence in shaping the discourse in electric machinery research.

Moreover, his 20 consultancy projects with industry underscore his ability to translate academic research into technologies and solutions that benefit electrical utilities and manufacturers. His work on excitation control, electromagnetic modeling, and power tracking systems plays a crucial role in modernizing power generation and distribution infrastructures.

🌟 Legacy and Future Contributions

Looking ahead, Professor Guorui Xu remains a visionary in the field of power engineering. His continued focus on the next generation of synchronous machines, with smarter control strategies and environmentally responsive designs, places him at the forefront of China’s efforts toward a low-carbon, energy-efficient future. As a mentor and educator, he is shaping the minds that will carry forward the torch of innovation, ensuring a resilient and sustainable energy ecosystem.

Through his persistent research, academic service, and thought leadership, Professor Xu is not only enhancing the scientific understanding of electrical machinery but also cultivating a legacy of excellence, mentorship, and technological advancement that will inspire generations to come.

📝Notable Publications

Influence of Rotor Damping Structures on Power Tracking Excitation Control Characteristics of Dual-excited Synchronous Generator

Authors: Xu, Guorui; Fu, Yue; Zhang, Jiancheng
Journal: Zhongguo Dianji Gongcheng Xuebao / Proceedings of the Chinese Society of Electrical Engineering
Year: 2025

A New Power Flow Controller Based on Dual-Excited Synchronous Machine

Authors: Xu, Guorui; Li, Qianwei; Wang, Hao; Sun, Fuke; Lin, Jintian
Journal: IEEE Transactions on Industry Applications
Year: 2025

 Electromagnetic Force Characteristics of Doubly-Fed Induction Machines Considering Harmonics from Rotor-Side Converters

Authors: Wang, Chenbo; Wu, Zhiqiang; Ren, Chaofan; Xu, Guorui; Zhao, Haisen
Journal: IEEE Transactions on Industry Applications
Year: 2025

 Numerical Calculation for Transient and Sub-Transient Parameters of Dual-Excited Synchronous Generator Based on Time-Stepping Finite Element Model

Authors: Xu, Guorui; Yang, Guangliang; Shen, Haipeng; Cui, Xueshen; Zhao, Haisen
Journal: IEEE Transactions on Industry Applications
Year: 2025

Reduced-Order Electromagnetic Transient Model Based on Equivalent Flux Linkage Derivative for Induction Motors Under Voltage Sag Condition

Authors: Yang, Guangliang; Guan, Tongyu; Kang, Jinping; Xu, Guorui; Zhao, Haisen
Journal: IET Electric Power Applications
Year: 2024