Dr. Pin Ma | Innovative Leadership | Best Researcher Award

Dr. Pin Ma | Innovative Leadership | Best Researcher Award

Ningxia University, China 

Profile 

Orcid

Early Academic Pursuits 🎓

Pin Ma began his academic journey with a Bachelor of Science (B.S.) in Material Physics from Qingdao University of Science & Technology, where he graduated at the top of his class (GPA: 3.83, rank 1/69) in 2013. His outstanding academic performance during his undergraduate years laid a solid foundation for his future research in material science. From there, he pursued a Master of Engineering (M.E.) in Materials Engineering at the Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, under the mentorship of Professor Yuan Lin. He achieved an impressive GPA of 3.74, which reflected his deep understanding of materials science and engineering principles. His early research in this period was focused on material physics and engineering, which later paved the way for his work on energy storage and nanomaterials.

In 2016, he began his Ph.D. studies in Physical Chemistry at the same institution under Professor Yuan Lin, where he deepened his research into advanced materials, particularly in energy storage systems and photochemistry. He was driven by the desire to find sustainable and efficient solutions for the growing global energy demand. His research during his Ph.D. contributed significantly to the development of innovative materials with applications in energy storage and electrochemical systems.

Professional Endeavors and Contributions 👨‍🔬

Pin Ma’s professional career took off after completing his Ph.D. in 2019. He began a postdoctoral position at the Singapore University of Technology and Design and Shenzhen University, where he worked under the guidance of Professor Huiying Yang and Professor Yumeng Shi. During this period, he focused on cutting-edge research in materials science, particularly in the development of MXene-based materials and sodium-ion batteries. These materials have shown tremendous potential in enhancing energy storage capacities, which is crucial for the future of renewable energy technologies.

In 2023, he took on the role of Associate Professor at Ningxia University. Here, his research has been centered on advanced energy storage systems, particularly the development of stress-release layers on Si nanoparticles for high-performance lithium storage and MXene nanostructures for sodium-ion batteries. His work is particularly focused on creating sustainable and efficient solutions to the energy challenges faced by modern society.

Research Focus 🔬

Pin Ma’s research primarily revolves around energy storage systems, advanced nanomaterials, and electrochemical properties of novel materials. His notable work includes the development of Si nanoparticle-based systems for lithium storage and MXene-based materials for sodium-ion storage, both of which are pivotal in the advancement of battery technologies. His research has contributed significantly to improving the performance, stability, and efficiency of these storage systems, making them more viable for large-scale applications.

In addition, his work on ionic liquid-based gel electrolytes and the surface chemistry of nanoparticles has opened new doors for improving the performance of dye-sensitized solar cells and other electrochemical devices. His research has been published in high-impact journals such as Journal of Alloys and Compounds, Advanced Science, and ACS Applied Materials & Interfaces, underscoring the scientific community’s recognition of his contributions.

Accolades and Recognition 🏆

Throughout his career, Pin Ma has earned numerous accolades for his research. His publications have received widespread recognition in the academic community, and he is frequently cited for his groundbreaking work on nanomaterials and energy storage systems. Some of his notable research publications include his work on the self-assembly of 2D VS₂/Ti₃C₂Tx MXene nanostructures, published in Advanced Science, and the capacitive deionization technology he helped develop, published in Desalination. His work on sodium-ion batteries and the confinement of Co₄S₃ nanoparticles for energy storage in ACS Applied Materials & Interfaces has also gained significant attention.

In addition to his academic accomplishments, Pin Ma has co-authored several collaborative research projects that involve international teams. His contributions to these projects have helped push forward new methods of energy storage and have positioned him as a leader in his field.

Impact and Influence 🌍

Pin Ma’s research has far-reaching implications in the fields of energy storage and material science. His work on improving the efficiency and sustainability of energy storage systems is crucial for the ongoing transition to renewable energy sources. The technologies he has helped develop are particularly important in addressing global challenges such as climate change and the need for sustainable energy solutions.

His influence is also seen through the numerous citations and collaborations he has been involved in, working alongside other leading researchers in material science. His contributions to the development of MXene-based materials and novel electrolytes have set the stage for the next generation of energy storage devices, which will be more efficient, reliable, and scalable for industrial applications.

Legacy and Future Contributions 🌱

As Pin Ma continues his role as an Associate Professor at Ningxia University, his legacy will undoubtedly be marked by his innovative contributions to the fields of material science and energy storage. His research on stress-release layers for lithium storage and MXene nanostructures for sodium-ion batteries are likely to be further explored and developed by future researchers. Additionally, his work on improving the conductivity of gel electrolytes and nanostructured materials will have a lasting impact on the design of next-generation energy devices.

In the future, Pin Ma is poised to lead new research initiatives that could reshape the way energy is stored and utilized globally. His commitment to addressing environmental and energy challenges ensures that his work will remain relevant for years to come, contributing to a more sustainable future.

Notable Publications

Constructing 1D/2D NiCo-LDH Nanowire/MXene Composites for Efficient And Stable Lithium Storage

Journal: Advanced Materials Interfaces
Year: 2024

Cationic segregation of Ca₂Mn₃O₈ enabling high selectivity for fluoride ions through capacitive deionization

Journal: Desalination
Year: 2023

Co₄S₃ Nanoparticles Confined in an MnS Nanorod-Grafted N, S-Codoped Carbon Polyhedron for Highly Efficient Sodium-Ion Batteries

Journal: ACS Applied Materials & Interfaces
Volume: To be confirmed (2023)
Year: 2023

Self-Assembled 2D VS₂/Ti₃C₂Tₓ MXene Nanostructures with Ultrafast Kinetics for Superior Electrochemical Sodium-Ion Storage

Authors:
Journal: Advanced Science
Year: 2023

Highly efficient and stable ionic liquid-based gel electrolytes

Journal: Nanoscale
Year: 2021

 

Mr. jiyang zhang | Innovative Leadership| Best Researcher Award

Mr. jiyang zhang | Innovative Leadership| Best Researcher Award

Zhongshan Research Institute, Changchun University of Science and Technology, China 

Profile 

Orcid

🌱 Early Academic Pursuits

Hebat-Allah Sarhan Abd-Allah Tohamy’s academic journey began with a strong foundation in Chemistry and Biochemistry at the Faculty of Science, Helwan University, where she completed her B.Sc. in 2011 with honors. Demonstrating early promise, she ranked among the top ten students, showcasing her dedication and aptitude in her field. Tohamy pursued her passion for organic chemistry further, earning an M.Sc. in 2017. Her thesis, titled “Preparation, Characterization, and Applications of Cellulose-Based Amphiphilic Materials,” laid the groundwork for her later research endeavors. In 2020, she completed her Ph.D. in Organic Chemistry, also at Helwan University, with a thesis focused on “Preparation, Characterization, and Applications of Carbon Allotropes Derived from Agricultural Wastes.” This work marked a significant milestone, reflecting her commitment to sustainability and innovative uses of agricultural byproducts.

💼 Professional Endeavors

Tohamy’s professional career is characterized by her extensive experience in cellulose chemistry, nanomaterials, and the recycling of agricultural wastes. Since 2012, she has been working at the National Research Center (NRC) in the Cellulose and Paper department. Her research interests span a broad spectrum, including kinetics, thermal analysis, hydrogels, nanotechnology, and the development of amphiphilic polymers. Tohamy’s work focuses on the synthesis of advanced materials such as graphene oxide, carbon nanotubes, and carbon quantum dots from agro-wastes, emphasizing their applications in water treatment, drug delivery, and environmental sustainability.

Her expertise extends to material characterization techniques like XRD, TEM, SEM, IR, TGA&DTA, DSC, Raman spectroscopy, UV, elemental analysis, and more. Tohamy has also been involved in various scientific missions in Prague, Czech Republic, between 2019 and 2023, further enriching her knowledge and experience in her field.

🧪 Contributions and Research Focus

Tohamy’s research contributions are notable for their focus on sustainability and innovative material science. She has developed methods to recycle agricultural wastes into valuable products, such as cellulosic materials, graphene oxide, and carbon nanotubes. Her work on amphiphilic polymers and pH/thermo-responsive hydrogels has potential applications in drug delivery and water treatment, addressing critical challenges in both the pharmaceutical and environmental sectors.

She is also well-versed in nanotechnology, particularly in the fabrication of nanomaterials from agro-wastes. Her research has led to the development of new materials with unique properties, suitable for applications in sensors and the detection of waste contaminants. Through her work at NRC, Tohamy has contributed to the advancement of knowledge in cellulose chemistry, sustainability, and the development of eco-friendly materials.

🏆 Accolades and Recognition

Tohamy’s achievements have been recognized through various awards and honors. In 2017, she received the Best M.Sc. Thesis Award at the National Research Centre, highlighting the significance of her early research. Her scientific contributions have earned her a high h-index of 13, reflecting the impact of her work in the scientific community.

She is also an active member of several professional organizations, including the Egyptian Society of Polymer Science and Technology and the Organization for Women in Science for the Developing World (OWSD). Tohamy has been featured on Egyptian TV’s Channel 2 in the program “Hadath fi Misr,” where she discussed innovative solutions for transforming agricultural waste into valuable resources like cellulose and carbon materials. Her ability to communicate complex scientific ideas to a broader audience has further cemented her reputation as a leading researcher in her field.

🌍 Impact and Influence

Tohamy’s work has had a significant impact on the fields of material science and environmental sustainability. Her research on recycling agricultural wastes into nanomaterials has the potential to revolutionize industries reliant on raw materials, offering eco-friendly alternatives that reduce waste and environmental impact. Her contributions to water treatment and drug delivery systems are particularly noteworthy, providing innovative solutions to pressing global challenges.

Her participation in international conferences and webinars, such as the 15th Nanomaterials MDPI Webinar and the Global Summit on Artificial Intelligence (GSAI2024), has allowed her to share her knowledge and insights with the global scientific community. Tohamy’s work is not only advancing the field of chemistry but also inspiring future generations of scientists, particularly women in STEM.

🔮 Legacy and Future Contributions

Looking ahead, Tohamy’s legacy is likely to be defined by her continued contributions to sustainability and material science. As the Principal Investigator (PI) of the PRIMA International Project (2024-2026) and other significant research projects, she is poised to make further breakthroughs in the development of smart materials from agricultural wastes. Her work on stimuli-responsive smart materials and amphiphilic carbon-based allotropic polymers will likely continue to influence the fields of water treatment, drug delivery, and beyond.

Tohamy’s dedication to research, innovation, and sustainability positions her as a leader in her field. Her work not only addresses current environmental challenges but also paves the way for future advancements in material science and nanotechnology. Through her research, Tohamy is contributing to a more sustainable and scientifically advanced world, ensuring her impact will be felt for years to come.

Publications 

Fullerenes and tree-shaped/fingerprinted carbon quantum dots for chromium adsorption via microwave-assisted synthesis

Authors: Hebat-Allah S. Tohamy, Mohamed El-Sakhawy, Samir

Journal: RSC Advances

Year: 2024

Fluorescence ‘Turn-on’ Probe for Chromium Reduction, Adsorption and Detection Based on Cellulosic Nitrogen-Doped Carbon Quantum Dots Hydrogels

Authors: Hebat-Allah S. Tohamy

Journal: Gels

Year: 2024

 

Dr. Qijie Li | Innovative Leadership | Best Researcher Award | 3037

Dr. Qijie Li | Innovative Leadership | Best Researcher Award

West China Hospital of Sichuan University, China

🔗 Profile

Scopus

Early Academic Pursuits 📚

Qijie Li’s academic journey began with a profound interest in medical science and research, culminating in a Ph.D. from Sichuan University. His early academic pursuits were marked by a deep commitment to understanding chronic diseases and the physiological effects of high-altitude environments. During his postdoctoral fellowship at Sichuan University, Dr. Li developed a keen focus on the complex interplay between high-altitude conditions and various chronic diseases. This period laid the foundation for his future research and professional endeavors.

Professional Endeavors 🏥

Currently serving as an Assistant Research Fellow at West China Hospital of Sichuan University, Dr. Li has made significant strides in the field of medical research. His role involves conducting advanced research in chronic diseases, traumatic stress, and wound healing, particularly in high-altitude settings. Dr. Li’s professional journey is highlighted by his involvement in key research projects that explore the impacts of environmental stressors on human health. He is also an active member of several professional societies, including the Special Committee for Women and Children of the Sichuan Information Society of Traditional Chinese Medicine and the Branch of Nutrition Epidemiology of the Chinese Nutrition Society.

Contributions and Research Focus 🔬

Dr. Li’s research focus is primarily on chronic diseases prevalent in high-altitude regions and their management. His notable work includes investigating the effects of the HIF-2α inhibitor PT2385 on high-altitude polycythemia, a condition characterized by an abnormal increase in red blood cells. His research has demonstrated that PT2385 treatment significantly improves congestion phenotypes, reduces erythrocytes and hemoglobin levels, mitigates blood vessel formation, and alleviates lipid peroxidation and inflammation. This study not only provides valuable insights into the physiological and immunological impacts of PT2385 but also lays the groundwork for clinical applications in preventing and treating high-altitude polycythemia.

Dr. Li’s work also extends to traumatic stress and wound healing. His research into the role of adipose tissue and cells in innate immune regulation has opened new avenues for understanding the body’s response to stress and injury, with potential implications for accelerated rehabilitation and precision nursing.

Accolades and Recognition 🏆

Dr. Li has been recognized for his exceptional contributions to medical research and innovation. In 2020, he received the third prize in the Science and Technology Award of the Tibet Autonomous Region, a testament to his impactful research and dedication. His extensive list of publications, including articles in reputable journals such as the European Journal of Pharmaceutical Sciences and MedComm, underscores his scholarly achievements. Dr. Li’s work has garnered significant attention within the academic community, reflected in his high citation index and influential research findings.

Impact and Influence 🌍

Dr. Li’s research has had a substantial impact on both the scientific community and clinical practice. His studies on high-altitude chronic diseases and innovative treatment approaches have provided new perspectives on managing these conditions. By elucidating the mechanisms through which PT2385 and other treatments affect high-altitude polycythemia and related disorders, Dr. Li’s work contributes to the development of more effective therapeutic strategies. His research also influences clinical practices related to trauma care and wound healing, enhancing patient outcomes and recovery processes.

Furthermore, Dr. Li’s involvement in professional memberships and collaborations with institutions like Tibet Autonomous Region People’s Hospital amplifies his impact, fostering advancements in medical research and practice.

Legacy and Future Contributions 🚀

As Dr. Li continues to advance his research, his legacy is being shaped by his commitment to improving healthcare outcomes for individuals living in challenging environments. His pioneering work in high-altitude medicine and chronic disease management sets a high standard for future research in these areas. Looking ahead, Dr. Li’s future contributions are expected to focus on expanding the understanding of chronic disease mechanisms and developing novel treatment approaches.

His ongoing projects and collaborations suggest a promising trajectory for his research, with potential to influence global health practices and contribute to the scientific community’s knowledge base. Dr. Li’s dedication to advancing medical science and improving patient care reflects a lasting legacy that will continue to inspire and benefit future generations of researchers and clinicians.

In summary, Qijie Li’s academic and professional journey is characterized by his groundbreaking research, significant contributions to medical science, and recognition as a leading figure in his field. His work not only addresses pressing health issues but also paves the way for future advancements in medical research and clinical practice.

📚 Publications

Nana Zhang-Innovative Leadership-Best Researcher Award

Assist Prof Dr. Nana Zhang-Innovative Leadership-Best Researcher Award

Xian Jiaotong University-China

Author Profile 

Early Academic Pursuits

Zhang Nana embarked on her academic journey at Shaanxi University of Traditional Chinese Medicine, where she pursued a Bachelor of Clinical Medicine, graduating in 2015. This foundational education provided her with a robust understanding of clinical medicine and traditional Chinese medical practices. During her undergraduate years, she demonstrated an exceptional aptitude for medical sciences, which set the stage for her future endeavors in pathology and pathophysiology.

In 2016, Zhang Nana began her doctoral studies at Xi'an Jiaotong University, specializing in Pathology and Pathophysiology. Her PhD program was rigorous, demanding extensive research and a deep dive into chronic inflammatory diseases and novel therapeutic approaches. She completed her doctorate in 2020, equipping her with advanced knowledge and research capabilities in her field.

Professional Endeavors

Upon earning her PhD, Zhang Nana joined the Institute of Regenerative and Reconstructive Medicine at the MED-X Research Institute, affiliated with the First Affiliated Hospital of Xi'an Jiaotong University, as an Assistant Researcher. Since 2020, she has been actively involved in pioneering research focused on chronic inflammatory diseases and the development of innovative physical therapies for malignant tumors.

Her role involves spearheading research projects that explore and develop new physical therapy technologies. Zhang Nana's work in this capacity has led to significant advancements in physical therapy modalities, directly contributing to improved patient care protocols. Her dedication to research and development has established her as a key figure in the field of regenerative and reconstructive medicine.

Contributions and Research Focus

Zhang Nana's research primarily revolves around chronic inflammatory diseases and the therapeutic potential of physical treatments for malignant tumors. As the Principal Investigator of the National Project on Reversal of PD-1 Inhibitor Resistance by Irreversible Electroporation-Transformed Immunophenotyping in Pancreatic Cancer, funded by the National Natural Science Foundation of China, she is working on groundbreaking methods to combat cancer. This project, spanning from January 2023 to December 2025, aims to enhance the efficacy of PD-1 inhibitors in treating pancreatic cancer by using irreversible electroporation to remodel the tumor immune microenvironment.

Additionally, Zhang Nana leads a Provincial Project funded by the Natural Science Basic Research Program of Shanxi Province, which focuses on using irreversible electroporation to target pancreatic cancer stem cells with PD-1 inhibitors. This project ran from January 2022 to December 2023 and has provided valuable insights into the tumor immune microenvironment and the role of cancer stem cells in therapy resistance.

As a Co-Investigator, she has participated in three significant national key R&D plan projects that concentrate on the development of new medical technologies and devices, showcasing her versatility and collaborative spirit in advancing medical research.

Accolades and Recognition

Zhang Nana's contributions to the field have not gone unnoticed. She has published ten SCI-indexed papers as the first author and corresponding author, in addition to co-authoring three more. These publications have cemented her reputation as a leading researcher in her domain. Furthermore, she holds a utility model patent for a convenient tissue antigen retrieval pressure cooker (ID: ZL 2020 2 1046772.6), granted in June 2020, highlighting her innovative approach to solving practical problems in medical research.

Impact and Influence on Innovative Leadership

Zhang Nana's work has had a profound impact on the field of pathology and pathophysiology. Her research into chronic inflammatory diseases and the development of new physical therapy technologies has not only advanced scientific knowledge but also translated into tangible improvements in clinical practices. By enhancing the efficacy of treatments for malignant tumors, she has significantly contributed to patient care and outcomes.

Her efforts in developing new medical technologies have also influenced the broader medical community, encouraging the adoption of novel approaches and techniques in research and clinical settings. As a member of several prestigious professional affiliations, including the Center for Regenerative and Reconstructive Medicine and the National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Zhang Nana continues to shape the future of medical research and practice in China.

Legacy and Future Contributions

Looking forward, Zhang Nana is poised to make even greater contributions to the field. Her ongoing projects and future research endeavors promise to further unravel the complexities of chronic inflammatory diseases and cancer treatment. By continuing to explore innovative therapies and technologies, she aims to pave the way for more effective and less invasive treatments, ultimately improving the quality of life for patients.

Her legacy will likely be defined by her relentless pursuit of knowledge, her innovative spirit, and her commitment to advancing medical science. As she continues to mentor young researchers and collaborate with peers, Zhang Nana will undoubtedly leave an indelible mark on the field, inspiring future generations to follow in her footsteps.

Furthermore, innovative leadership is not just about generating ideas but also about executing them effectively. It requires strategic thinking, adaptability, and a willingness to navigate uncertainty. Successful innovative leaders empower their teams to take calculated risks, learn from failures, and iterate rapidly. They leverage technology and data-driven insights to make informed decisions and stay ahead of market trends. Ultimately, innovative leadership is about driving transformation and creating value by harnessing the full potential of people and resources in a constantly evolving landscape.

Conclusion

In summary, Zhang Nana's journey from an undergraduate student to a leading researcher in pathology and pathophysiology is marked by her dedication, innovation, and significant contributions to medical science. Her work has not only advanced the understanding and treatment of chronic inflammatory diseases and malignant tumors but also set new standards for research and clinical practice. As she continues her research and collaborations, Zhang Nana's impact on the field will only grow, solidifying her legacy as a pioneer in medical research and therapy development.

Innovative leadership is a dynamic approach to guiding teams and organizations toward groundbreaking solutions and novel ideas. It involves fostering an environment where creativity is encouraged, risks are seen as opportunities for growth, and traditional boundaries are challenged. Innovative leaders are visionaries who inspire others to think outside the box, experiment with new methods, and embrace change as a catalyst for progress. They prioritize curiosity, collaboration, and continuous learning, recognizing that innovation often stems from diverse perspectives and interdisciplinary approaches.

Notable Publications