Assist Prof Dr. Taku Ishii | Decision-making and Problem-solving | Best Research Article Award

Assist Prof Dr. Taku Ishii | Decision-making and Problem-solving | Best Research Article Awar

Institute of Science Tokyo | Japan

Author Profile

ORCID

Early Academic Pursuits

Taku Ishii’s academic path reflects a focused dedication to understanding and addressing complex pediatric cardiovascular diseases. From the outset of his medical education, he was drawn to the intricacies of pediatric cardiology, a specialty that demands both technical precision and a deep sense of compassion. His early clinical training allowed him to develop expertise in diagnosing and managing congenital heart disease and pulmonary hypertension, conditions that profoundly affect the lives of young patients and their families. Seeking to enhance his approach to patient care, he pursued graduate studies in public health, which broadened his perspective beyond individual treatment toward the systemic and epidemiological aspects of healthcare. This unique combination of clinical and public health training equipped him with a multifaceted approach to pediatric cardiology, enabling him to address not only the biological mechanisms of disease but also the societal factors influencing patient outcomes.

Professional Endeavors

In his current role as an Assistant Professor at the Institute of Science Tokyo, Taku Ishii operates at the intersection of clinical practice, academic instruction, and research leadership. As a clinician, he provides specialized care to children with life-threatening and complex cardiac conditions, applying innovative treatment strategies to improve long-term health outcomes. His academic contributions involve mentoring medical students and residents, fostering their clinical judgment, technical skills, and dedication to compassionate care. Beyond the classroom and hospital, he actively participates in the Japanese Association of Congenital Heart Disease with Pulmonary Hypertension (JACPHR), contributing to collaborative research and nationwide efforts to advance understanding and management of these conditions. His professional life is characterized by a commitment to advancing patient care while building the capacity of the next generation of pediatric cardiologists.

Contributions and Research Focus

Taku Ishii’s research portfolio reflects his dual commitment to scientific advancement and clinical relevance. His studies encompass molecular biology, clinical cardiology, and epidemiology, creating a holistic body of work that addresses both the mechanisms and management of pediatric heart diseases. His co-authored research in The FASEB Journal explores the role of Hedgehog signaling in the development of pulmonary arterial hypertension, identifying cyclopamine as a potential therapeutic agent to mitigate disease progression. His work published in Cureus examines the role of implantable cardioverter defibrillators in preventing sudden cardiac death in children with arrhythmogenic right ventricular cardiomyopathy, providing much-needed data to guide treatment in pediatric populations. Additionally, his collaboration in the Journal of Human Genetics documents novel cases of HYAL2 deficiency, linking genetic variations to different clinical severities, and reinforcing the integration of genetic insights into pediatric cardiology. Through these contributions, he advances both the understanding of disease mechanisms and the development of patient-centered therapeutic strategies.

Accolades and Recognition

Taku Ishii’s achievements have earned him professional recognition within both national and international medical communities. His appointment as an assistant professor at the Institute of Science Tokyo underscores his standing as a respected academic and clinician. His publications in high-impact, peer-reviewed journals demonstrate the scientific rigor and clinical relevance of his work, contributing to ongoing global conversations in pediatric cardiology. His active involvement in collaborative research networks, such as the JACPHR, not only highlights his commitment to team-based science but also positions him as a valued contributor to the advancement of pediatric cardiac care. These acknowledgments reflect the trust placed in his expertise and his role in influencing the future direction of his field.

Impact and Influence

The influence of Taku Ishii’s work is evident in both direct patient care and the broader advancement of pediatric cardiology. Clinically, his interventions have improved the lives of children with complex and often life-threatening cardiac conditions. Academically, his teaching and mentorship shape the perspectives and capabilities of emerging pediatric specialists, instilling in them the values of precision, empathy, and evidence-based practice. His research, grounded in both clinical and public health perspectives, informs treatment guidelines and contributes to national health strategies aimed at better managing pediatric cardiovascular diseases. By bridging molecular research with patient care and policy considerations, he has established himself as a central figure in ensuring that scientific advances translate into tangible improvements in health outcomes.

Legacy and Future Contributions

Looking ahead, Taku Ishii is well-positioned to continue driving innovation in pediatric cardiology through cutting-edge research and collaborative initiatives. His ongoing studies in pulmonary hypertension and congenital heart disease have the potential to yield new diagnostic tools and therapeutic approaches, ultimately improving survival rates and quality of life for affected children. His interest in genetic research is likely to further integrate precision medicine into pediatric care, paving the way for individualized treatment strategies. Equally important is his role as an educator and mentor, ensuring that his knowledge and values are passed on to future generations of physicians and researchers. His legacy will be defined by both his scientific contributions and his enduring influence on the medical professionals he has trained and inspired.

Notable Publications

Pharmacological Treatment Practices for Patients with Congenital Heart Disease and Pulmonary Hypertension in Japan: Insights from the Japanese Association of Congenital Heart Disease Registry (JACPHR)

Authors: Taku Ishii; Keiko Uchida; Susumu Hosokawa; Reina Ishizaki; Naofumi F Sumitomo; Yoshiyuki Furutani; Hidekazu Ishida; Shinichi Takatsuki; Kei Inai; Kunihiko Takahashi et al.
Journal: The American Journal of Cardiology
Year: 2025

Marked improvement in severe pulmonary arterial hypertension following airway infection in a patient with a heterozygous BMP9 nonsense mutation: A case report

Authors: Taku Ishii; Makito Sakurai; Yohei Yamaguchi; Kei Takasawa; Susumu Hosokawa
Journal: — (Other publication type)
Year: 2025

Challenges in Accurately Assessing Acute Vasoreactivity in Pediatric Pulmonary Arterial Hypertension: Case Reports Highlighting the Impact of Sedation on Diagnostic Accuracy

Authors: Kana Inoue; Taku Ishii; Yohei Yamaguchi; Satoshi Nagahara; Makito Sakurai; Susumu Hosokawa; Shozaburo Doi; Diego Araiza-Garaygordobil
Journal: European Heart Journal – Case Reports
Year: 2025

Exploring viral infections’ role in Kawasaki disease onset: A study during the COVID‐19 pandemic

Authors: Taku Ishii; Nobutoshi Nawa; Susumu Hosokawa; Tomohiro Morio; Takeo Fujiwara
Journal: Journal of Medical Virology
Year: 2024

Association between the initiation of insurance coverage for fetal echocardiography and mortality from congenital heart disease in infants: An interrupted time series analysis

Authors: Taku Ishii; Nobutoshi Nawa; Shozaburo Doi; Tomohiro Morio; Takeo Fujiwara
Journal: Paediatric and Perinatal Epidemiology
Year: 2023

Conclusion

Taku Ishii’s career embodies the integration of clinical excellence, academic leadership, and research innovation. His journey from focused academic preparation to impactful professional practice demonstrates a sustained commitment to improving the lives of children with complex cardiac conditions. Through his clinical care, he offers hope and healing to patients and families; through his research, he advances the understanding and treatment of pediatric heart diseases; and through his mentorship, he shapes the future of the field. His work stands as a testament to the power of combining science, compassion, and education to create meaningful and lasting change in medicine.

Dr. Fatemeh Tahmasebi | Innovative Leadership | Best Researcher Award

Dr. Fatemeh Tahmasebi | Innovative Leadership | Best Researcher Award

Department of Anatomy, Faculty of Medicine | Iran

Author Profile

Google Scholar 

Early Academic Pursuits

Dr. Fatemeh Tahmasebi began her academic journey with a strong focus on the medical sciences, specializing in the intricate field of human anatomy. Her academic pursuits were rooted in deep scientific curiosity, which laid the foundation for her future as a research-driven academic. Her doctoral studies concentrated on anatomical sciences, a discipline that demands both rigorous theoretical knowledge and exceptional laboratory proficiency. These formative years were critical in shaping her understanding of the complexities of the human nervous system, cellular interactions, and regenerative medicine—areas that would later become central to her research identity.

Professional Endeavors

Currently serving as an Assistant Professor at the School of Medicine, Mashhad University of Medical Sciences, Dr. Tahmasebi has established herself as a dedicated academic and researcher. In her role as a faculty member, she not only contributes to the education of medical students but also actively mentors research scholars in highly technical, experimental studies. Her professional career has been consistently aligned with high-impact areas in neuroanatomy and tissue engineering, with particular focus on spinal cord injuries, neurodegeneration, and neural regeneration. She has demonstrated exceptional leadership in numerous research projects, often taking on the role of executive investigator, managing all aspects of experimental design, implementation, and data analysis.

Contributions and Research Focus

Dr. Tahmasebi’s research portfolio is both extensive and multidisciplinary, merging neurobiology, stem cell therapy, nanotechnology, and regenerative medicine. She has made significant strides in developing innovative approaches to treating spinal cord injuries and neurodegenerative diseases using adipose-derived mesenchymal stem cells, nanofiber scaffolds, and targeted drug delivery systems. Her research projects include studies on the phenotypic modulation of glial cells, the interaction of neurons and astrocytes in disease models, and the use of nanotechnology to enhance the efficacy of regenerative treatments.

One of her hallmark contributions is the use of polymeric and carbon nanotube-based scaffolds enriched with therapeutic agents like curcumin, hesperidin, and ellagic acid to enhance recovery in spinal cord injury models. Additionally, she has led groundbreaking investigations into the role of microRNAs in neural degeneration, especially in Parkinson’s disease and multiple sclerosis models. Her pioneering work on the use of exosome-loaded hydrogels for targeted drug delivery exemplifies her dedication to translational research that bridges the gap between basic science and clinical application.

Dr. Tahmasebi’s research also extends to developmental neuroscience. She has explored how maternal diabetes impacts the expression of neurotransmitter receptors in neonates, offering insights into developmental neurobiology and the intergenerational effects of metabolic disorders.

Accolades and Recognition

Her scientific achievements are reflected in her prolific publication record in peer-reviewed, high-impact journals indexed in ISI, Scopus, PubMed, and other international databases. Many of her articles have been published in reputed journals such as the Journal of Cellular Physiology, Neuropeptides, Journal of Molecular Histology, Journal of Cellular Biochemistry, Cell Journal, and Journal of Chemical Neuroanatomy. In these works, she often appears as the first or corresponding author, demonstrating her leadership in research conceptualization and execution.

Beyond publications, Dr. Tahmasebi has also collaborated on several major research projects, bringing together expertise across multiple institutions and research centers. Her role as a co-investigator in numerous studies reflects her capacity to contribute both technically and intellectually to multidisciplinary scientific efforts.

Impact and Influence

Dr. Tahmasebi’s work has had a meaningful impact on both academic scholarship and biomedical research related to neuroregeneration. Her focus on integrating stem cell biology with nanomedicine to treat conditions like multiple sclerosis and spinal cord injuries addresses urgent global health challenges. Her research on microglial and astrocyte modulation has helped deepen understanding of the cellular microenvironment during neurodegeneration and repair. By advancing therapies that utilize bioengineered scaffolds and exosomes, she is actively shaping the future of neural tissue engineering and personalized regenerative medicine.

Furthermore, her contributions have inspired a new generation of researchers, particularly in Iran, to pursue high-level, applied biomedical research. Through her involvement in postgraduate mentorship and interdisciplinary collaborations, she is helping to build research capacity and elevate the scientific standards in anatomical and neurological sciences.

Legacy and Future Contributions

Dr. Fatemeh Tahmasebi’s academic legacy is one of innovation, collaboration, and commitment to societal health. Her work stands at the crossroads of anatomical science, regenerative medicine, and nanotechnology. As research in neural repair and neuroplasticity continues to evolve, she is well-positioned to lead new initiatives in translational neuroscience. Her future endeavors are likely to include the development of bioresponsive scaffolds, gene regulation therapies via miRNAs, and deeper investigations into neuroimmune interactions during injury recovery.

She is poised to further influence medical science not only through pioneering research but also through active engagement in scientific dissemination and community health education. Her continued presence in academia and research will undoubtedly contribute to a deeper understanding of complex neurobiological processes and the development of more effective therapeutic strategies.

Notable Publications

Effect of the CSF1R inhibitor PLX3397 on remyelination of corpus callosum in a cuprizone‐induced demyelination mouse model

Authors: F. Tahmasebi, P. Pasbakhsh, K. Mortezaee, S. Madadi, S. Barati, I.R. Kashani
Journal: Journal of Cellular Biochemistry
Year: 2019

Masitinib: The promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series

Authors: A.H.M.E. Ketabforoush, R. Chegini, S. Barati, F. Tahmasebi, B. Moghisseh, …
Journal: Biomedicine & Pharmacotherapy
Year: 2023

Mesenchymal stem cell mediated effects on microglial phenotype in cuprizone‐induced demyelination model

Authors: S. Barati, I. Ragerdi Kashani, F. Moradi, F. Tahmasebi, S. Mehrabi, M. Barati, …
Journal: Journal of Cellular Biochemistry
Year: 2019

Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model

Authors: S. Madadi, P. Pasbakhsh, F. Tahmasebi, K. Mortezaee, M. Khanehzad, …
Journal: Metabolic Brain Disease
Year: 2019

The effect of microglial ablation and mesenchymal stem cell transplantation on a cuprizone‐induced demyelination model

Authors: F. Tahmasebi, P. Pasbakhsh, S. Barati, S. Madadi, I.R. Kashani
Journal: Journal of Cellular Physiology
Year: 2021

Assist. Prof. Dr. Congshan Li | Innovative leadership | Best Researcher Award

Assist. Prof. Dr. Congshan Li | Innovative leadership | Best Researcher Award

Zhengzhou University of Light Industry | China

Author Profile

Scopus

Education

Li’s academic journey began with a Bachelor of Science degree in Physics from Tangshan Normal University in 2009, where he studied under the supervision of Jing Chen. He advanced to Sichuan University, earning his Master of Engineering in Electric Power System and Automation in 2011, and continued at the same institution for his doctoral studies, completing a Ph.D. in the same field in 2014 under the mentorship of Professor Tianqi Liu. This rigorous academic foundation has equipped him with the theoretical and practical skills essential for tackling complex power system issues.

Professional Experience

Since completing his doctoral studies, Congshan Li has been an active faculty member at Zhengzhou University of Light Industry, contributing both to research and to the development of future engineers. As an instructor, he has taught core undergraduate and graduate courses such as Relay Protection of Power System, New Energy Power Generation and Control Technology, and Power System Comprehensive Practice. His consistent involvement in teaching these vital subjects underscores his dedication to academic excellence and mentorship.

Research Interests

Li’s research primarily revolves around the stability analysis and control of multi-terminal flexible DC transmission systems, particularly those incorporating wind and solar energy. His work addresses the challenges of integrating fluctuating renewable energy sources into the grid through advanced control strategies. His expertise extends to multi-level coordinated frequency control, optimal control strategies for HVDC systems, and protection technologies in AC/DC interconnected networks. His contributions are at the forefront of ensuring the reliability of modern power systems in the face of increasing renewable penetration.

Awards and Funded Projects

Li has led multiple prestigious research projects. Notably, he served as the Principal Investigator (PI) for a project funded by the National Natural Science Foundation (2017–2019), receiving ¥230,000 for work on Optimal Control Place Excavation and Multifunction DC Modulation of Multi-Terminal VSC-HVDC Systems. Additionally, he currently leads a Key Scientific and Technological Project of Henan Province (2025–2026), with a grant of ¥100,000, focusing on Multi-Level Coordinated Frequency Control of AC/DC Interconnection Systems with Multiple Types of New Energy. These competitive projects highlight his capability in addressing nationally relevant energy challenges.

Notable Publications

Coordination Design of PSS and STATCOM Based on the IDBO Algorithm to Improve Small-Signal Stability of Wind-PV-Thermal-Bundled Power System

Authors: Congshan Li, et al.
Journal: Journal of Energy Engineering
Year: 2025

Research on Voltage Droop Control Strategy with Additional DC Voltage for VSC-MTDC without DC Voltage Static Deviation

Authors: Congshan Li, et al.
Journal: Journal of Electrical Engineering and Technology
Year: 2025

 Short-Term Load Forecasting Based on CNN-BiLSTM Considering Load Time-Varying Trend Mapping

Authors: Congshan Li, et al.
Journal: Recent Advances in Electrical and Electronic Engineering
Year: 2025

Multi-Area System Frequency Response Modelling Considering VSG-Based Energy Storage

Authors: Congshan Li, et al.
Journal: IET Generation, Transmission and Distribution
Year: 2025

 The Influence of Additional Virtual Synchronous Generator Technology in VSC-MTDC Systems with Wind Power on System Frequency

Authors: Congshan Li, et al.
Journal: Recent Patents on Engineering
Year: 2025

Dr. Xin Hu | Innovative leadership | Best Researcher Award

Dr. Xin Hu | Innovative leadership | Best Researcher Award

Chang’an University, China

Xin Hu is a rapidly emerging academic voice in the field of computer vision, multimodal learning, and few-shot learning, currently serving as a Lecturer at the School of Data Science and Artificial Intelligence, Chang’an University, China. With a strong research background in diagram understanding and cross-modal information retrieval, Xin Hu is recognized for bridging the gap between image recognition and language understanding, particularly in educational and knowledge representation contexts. His innovative methodologies address real-world challenges where data scarcity, particularly in educational visual content, hinders effective AI interpretation and deployment. As a researcher with diverse interdisciplinary collaborations, Xin Hu’s work stands at the intersection of artificial intelligence, education technology, and cognitive computing.

Author Profile

ORCID

Education

Xin Hu completed his Bachelor of Engineering in Digital Media Technology and later a Master’s in Computer Technology at Xi’an Shiyou University. He further pursued and earned a Ph.D. in Computer Science and Technology from Xi’an Jiaotong University under the mentorship of Professor Jun Liu. Throughout his academic training, Xin Hu developed foundational skills in artificial intelligence, multimodal signal processing, and machine learning, with a specific focus on visual and linguistic data fusion, eventually applying these to real-world educational datasets and semantic tasks.

Experience

Xin Hu began his formal research journey in 2018 as a Ph.D. candidate, where he contributed to cutting-edge projects under China’s National Key Research and Development Program. He was actively engaged in two major national projects centered on big data knowledge engineering and educational data analysis. These projects aimed to enhance semantic retrieval and intelligent knowledge visualization, particularly in education. His role spanned from system architecture to guiding junior researchers and developing novel few-shot learning frameworks. By late 2023, Xin Hu had joined Chang’an University as a full-time Lecturer, where he continues to explore advanced multimodal learning models with practical educational applications.

Research Interests

Xin Hu’s primary research interests lie in computer vision, particularly few-shot learning, multimodal learning, and visual-linguistic matching tasks. He has demonstrated a unique ability to develop models that operate under limited supervision, focusing on diagrammatic content—an area often overlooked in mainstream AI research. His cross-modal attention frameworks and gestalt-perception-based approaches enable AI systems to better interpret complex visual content, such as diagrams in educational settings. His work in few-shot diagram-sentence matching (Fs-DSM) and gestalt-transformers has further extended AI’s capability to learn from minimal annotated data while preserving semantic integrity.

Awards 

While no standalone awards are explicitly listed, Xin Hu has been a consistent contributor to top-tier journals and conferences including IEEE Transactions on Image Processing, Neural Computation, AAAI, and IJCAI. His works have garnered significant citations, demonstrating academic influence and peer validation. As part of national R&D projects, he has also played a key role in transforming applied AI methodologies into deployable knowledge systems. His presence in IEEE and ACM conferences and workshops shows sustained engagement with the global AI research community.

Notable Publications

LFSRM: Few-Shot Diagram-Sentence Matching via Local-Feedback Self-Regulating Memory

Authors: Lingling Zhang, Wenjun Wu, Jun Liu, Xiaojun Chang, Xin Hu, Yuhui Zheng, Yaqiang Wu, Qinghua Zheng
Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence
Year: 2025

Hierarchy-Based Diagram-Sentence Matching on Dual-Modal Graphs

Authors: Wenjun Wu, Lingling Zhang, Jun Liu, Ming Ren, Xin Hu, Jiaxin Wang, Qianying Wang
Journal: Pattern Recognition
Year: 2025

SKFormer: Diagram Captioning via Self-Knowledge Enhanced Multi-Modal Transformer

Authors: Xin Hu, Jiaxin Wang, Tao Gao
Journal: Signal Processing
Year: 2025

Alignment Relation is What You Need for Diagram Parsing

Authors: Xinyu Zhang, Lingling Zhang, Xin Hu, Jun Liu, Shaowei Wang, Qianying Wang
Journal: IEEE Transactions on Image Processing
Year: 2024

Contrastive Graph Representations for Logical Formulas Embedding

Authors: Qika Lin, Jun Liu, Lingling Zhang, Yudai Pan, Xin Hu, Fangzhi Xu, Hongwei Zeng
Journal: IEEE Transactions on Knowledge and Data Engineering
Year: 2023

Mr. Ismail Muhammed | Innovative Leadership | Best Researcher Award

Mr. Ismail Muhammed | Innovative Leadership | Best Researcher Award

Universiti Brunei Darussalam, Brunei Darrussalam

Author Profile

ORCID

🎓 Early Academic Pursuits

From the outset of his academic journey, Ismail Aremu Muhammed demonstrated exceptional intellectual curiosity and a strong commitment to understanding the dynamics of economic systems. He began his tertiary education at the University of Ilorin, Nigeria, where he earned a B.Sc. in Economics. During this formative phase, he undertook a significant thesis titled “Impact of Government Expenditure on Economic Growth in Nigeria,” supervised by Dr. Ahmed T. Yakubu. This project not only provided him with a strong foundation in fiscal policy analysis but also sparked a deeper interest in macroeconomic dynamics and policy evaluation.

Determined to advance his academic capabilities, Ismail proceeded to the University of Lagos for a Master’s degree in Economics. There, he explored the intersection between institutional quality and fiscal performance, focusing on oil-exporting nations. His thesis, guided by Dr. David M. Oke, examined how institutional frameworks influence the cyclical nature of fiscal policies, setting the stage for his later interest in informal economies and development challenges in resource-rich environments.

Currently pursuing a Ph.D. in Economics at Universiti Brunei Darussalam, Ismail is working on a groundbreaking thesis that aims to estimate the global informal economy and understand its spillover effects on formal economies using a novel Bayesian Global VAR model. Under the mentorship of Dr. Gamini Premaratne and support from Professors Ahmed Masood Khalid and Norulazidah H. Omar Ali, he is developing a unique and timely framework with both theoretical and empirical relevance to global policymakers.

💼 Professional Endeavors

Ismail’s professional journey reflects a seamless blend of academic rigor and practical impact. He served as a Research Assistant at the University of Ilorin (2016–2017), where he supported quantitative research on development and macroeconomic themes. This role honed his skills in data handling, statistical modeling, and manuscript development, laying the groundwork for future research output.

His next professional chapter took shape at Analytiques Consult in Nigeria where he worked as a Research Officer between 2019 and 2022. At Analytiques, Ismail led critical research projects related to socio-economic trends in Nigeria and Sub-Saharan Africa. His work involved policy analysis, impact evaluations, and advanced econometric modeling — directly contributing to policy recommendations for NGOs and development partners. His ability to translate complex data into actionable insights set him apart in a competitive policy environment.

In 2024, Ismail expanded his expertise into academia by taking on the role of Teaching Assistant at Universiti Brunei Darussalam. Here, he assists in teaching Principles of Economics to undergraduate students, designs assessments, and supports curriculum planning. His approach to teaching reflects his commitment to inclusive and transformative learning experiences, empowering students with analytical thinking and quantitative tools.

🔍 Contributions and Research Focus

Ismail’s research cuts across labor economics, development policy, and the informal economy, with a keen focus on economic transformation in emerging markets. His doctoral work is pioneering in its global scope — estimating informal sector sizes, analyzing formal-informal linkages across countries, and applying robust statistical frameworks to capture dynamic interdependencies.

He has also shown scholarly depth in energy economics, environmental sustainability, climate resilience, and the integration of green technologies in economic policy. His research employs tools like Bayesian econometrics, impact evaluation, and causal inference using both survey and administrative data — illustrating his strong command of applied micro and macroeconomic techniques.

Furthermore, Ismail brings robust methodological expertise in Stata, R, SPSS, and EViews, making him a proficient data analyst and modeler — a vital skill set in today’s data-driven policy environment.

🏆 Accolades and Recognition

Though his formal accolades were not explicitly listed, Ismail’s academic trajectory and professional roles speak volumes about the recognition and trust he has earned within scholarly and consulting communities. Securing positions at institutions like Universiti Brunei Darussalam and Analytiques Consult reflects the high regard in which his research acumen, analytical precision, and work ethic are held.

Moreover, his ability to work closely with high-level supervisors and contribute to international academic discussions shows the esteem in which his contributions are valued. His IELTS score of 7.5 is further testimony to his strong command of English — a valuable asset for global academic communication.

🌍 Impact and Influence

Ismail’s work contributes to the broader conversation on informal economies, a theme of growing importance in the context of global inequality, post-COVID labor transitions, and sustainable development. His research is especially relevant to African economies like Nigeria, where informality significantly affects growth, tax revenue, and labor outcomes.

His commitment to inclusive policy design, quantitative rigor, and evidence-based development strategies is shaping conversations among policymakers, economists, and international organizations. As a teacher, his influence extends to the next generation of economists, whom he mentors with patience, clarity, and insight.

🌟 Legacy and Future Contributions

Looking ahead, Ismail Aremu Muhammed stands poised to leave a lasting legacy in the field of development economics. With the upcoming submission of his Ph.D. thesis in 2025, he is expected to make influential contributions through policy-relevant publications, international collaborations, and cross-country research on economic informality.

He is likely to become a key voice in African development discourse, combining academic excellence with real-world policy engagement. His future work may involve advisory roles, postdoctoral research, or leadership positions within global think tanks or universities — all platforms from which he can advance equitable, data-driven solutions to economic challenges.

🌱 In summary, Ismail’s journey is marked by diligence, intellectual passion, and a drive to transform economies through evidence, policy, and pedagogy. His research resonates globally but remains deeply rooted in the aspirations of developing regions. With a promising career ahead, Ismail Aremu Muhammed is a name to watch in the world of economics.

📝Notable Publications

Impact of renewable and non-renewable energy consumption, economic growth, and ICT on environmental degradation: Evidence from Asia Pacific Economic Cooperation countries

Author(s): Khan, R.Z.; Aremu, M.I.; Razak, L.A.; Premaratne, G.; Sattar, A.
Journal: International Journal of Green Energy
Year: 2025

INFORMAL ECONOMY, ISLAMIC FINANCE DEVELOPMENT, AND SUSTAINABLE DEVELOPMENT IN MUSLIM-MAJORITY COUNTRIES

Author(s): Muhammed, I.A.; Khalid, A.M.; Premaratne, G.
Journal: Journal of Islamic Monetary Economics and Finance
Year: 2024

Renewable Energy and Economic Growth in “Next Eleven” Emerging Markets

Author(s): Muhammed, I.A.; Ubandawaki, A.T.
Book: Green Energy and Technology (Book Chapter)
Year: 2024

Assoc Prof Dr. Juanjuan Wang | Innovative Leadership | Best Researcher Award

Assoc Prof Dr. Juanjuan Wang | Innovative Leadership | Best Researcher Award

Xi’an University of Technology, China

Author Profile

Scopus 

Early Academic Pursuits 🎓🔬

Juan-juan Wang’s journey in the realm of materials science began with a solid foundation in applied chemistry, earning a Bachelor of Science degree from Shaanxi University of Science and Technology in 1997. This initial academic grounding provided Wang with a comprehensive understanding of chemical principles, which would later serve as a critical underpinning for advanced material research. Following this, Wang pursued a Master of Science in Materials Physics and Chemistry at Northwestern Polytechnical University, completing the program in 2001. This stage marked a significant deepening of expertise, blending physics and chemistry to explore the fundamental properties and behaviors of materials. The culmination of Wang’s early academic endeavors was the pursuit of a PhD in Materials Science and Engineering at Xi’an University of Technology, awarded in 2010. This advanced training refined Wang’s research skills and established a clear direction toward ceramic composites and piezoelectric materials, areas that would define the rest of the career.

Professional Endeavors and Growth 🚀🏫

Since May 2006, Juan-juan Wang has held the position of Associate Professor at the School of Materials Science and Engineering at Xi’an University of Technology, a role that highlights his commitment to both education and research. This period reflects over a decade and a half of dedicated academic work, mentoring students, and developing innovative materials. Wang’s professional growth was further enriched by an international postdoctoral training stint at the Materials Research Institute of Pennsylvania State University, from 2014 to 2016. This experience in the United States exposed him to cutting-edge research methodologies and broadened his collaborative network, providing opportunities to engage with a global community of materials scientists. The exposure to diverse research environments enabled Wang to integrate advanced techniques and new perspectives into his work, fostering innovation and cross-cultural academic exchange.

Contributions and Research Focus 🔍⚙️

Juan-juan Wang’s research contributions primarily revolve around advanced ceramic-based composites, a field crucial for technological advancement in materials science. His work delves deeply into materials processing, microstructure development, and the phase characterization of ceramics, seeking to optimize properties for various applications. This area of research has broad implications, ranging from industrial manufacturing to electronics. Wang’s pioneering focus on piezoelectric-damp and giant dielectric materials marks a significant niche in materials engineering. Particularly, his investigations into ceramic-polymer piezoelectric-damp composites and lead-free giant dielectric ceramics are aligned with the global push towards environmentally friendly, high-performance materials. These materials are essential for modern electronics, sensors, and energy applications, and Wang’s work contributes to both fundamental science and practical innovations. Through his bilingual teaching of Advanced Composites and Nanomaterials, alongside Non-Destructive Testing Technology, Wang integrates cutting-edge research with education, preparing the next generation of scientists and engineers.

Accolades and Recognition 🏅📜

While specific awards and honors are not detailed, Wang’s academic appointments and international postdoctoral experience at a prestigious institution such as Pennsylvania State University serve as implicit recognition of his expertise and contributions. Holding an associate professorship at Xi’an University of Technology since 2006 underscores sustained excellence in teaching and research. Such longevity and international engagement typically accompany various forms of institutional acknowledgment, invitations to conferences, research funding, and publication records that collectively enhance Wang’s standing in the scientific community.

Impact and Influence 🌏🔗

The impact of Juan-juan Wang’s work can be seen both locally and globally. His contributions to advanced ceramics and piezoelectric materials influence multiple industries, from electronics to environmental technology. By focusing on lead-free dielectric ceramics, Wang addresses critical environmental concerns, pushing materials science toward sustainability. Moreover, his role as an educator ensures that his knowledge and insights propagate through his students, many of whom are likely to become researchers and innovators themselves. The bilingual nature of his teaching reflects a dedication to accessibility and international collaboration, positioning Xi’an University of Technology as a hub for global materials science education.

Legacy and Future Contributions Highlight 🌟🔮

Looking ahead, Juan-juan Wang’s legacy is poised to grow through continued innovation in ceramic composites and dielectric materials. His dedication to developing environmentally friendly, high-performance materials aligns perfectly with current global priorities in sustainability and technology. As materials science evolves with the integration of nanotechnology and new fabrication methods, Wang’s foundational work and ongoing research place him at the forefront of these advancements. His bilingual teaching and international research experience suggest that Wang will continue fostering cross-border collaborations and nurturing talents prepared to tackle future scientific challenges. His contributions will likely resonate in both academic literature and practical applications, ensuring a lasting influence on the materials science community.

📝Notable Publications

Sodium Tantalate doping-induced phase structure Regulation and electrical property enhancement in lead-free (Bi0.5Na0.5)₀.₉₄Ba₀.₀₆TiO₃ ceramic

Authors: J. Wang, Juanjuan; P. Ma, Pengkang; Q. Chai, Qizhen; X.L. Chao, Xiaoliang Lian; T. Yang, Tianyi

Journal: Current Applied Physics
Year: 2025

Energy storage properties in multiple ions co-doped Bi0.5Na0.5TiO3-SrTiO3 based ferroelectric ceramics via heterogeneous strategy coordination

Authors: J. Wang, Juanjuan; F. Lai, Fusheng; P. Ma, Pengkang; Z. Peng, Zhanhui; X.L. Chao, Xiaoliang Lian
Journal: Ceramics International
Year: 2025

Enhanced triboelectric capabilities of NaYW₂O₈/P(VDF-TrFE) composite films for human motion monitoring

Authors: B. Xie, Bochao; J. Wang, Juanjuan; Y. Ma, Yingying; Y. Jia, Yutong; J. Wang, Jiale
Journal: Ceramics International
Year: 2024

Dr. Zhaofeng Hou | Innovative Leadership | Best Researcher Award

Dr. Zhaofeng Hou | Innovative Leadership | Best Researcher Award

yangzhou university, China

Author Profile

Scopus 

🎓 Early Academic Pursuits

Zhaofeng Hou’s academic journey is deeply rooted in the rigorous and complex field of molecular parasitology, with a special focus on Toxoplasma gondii, a protozoan parasite of major medical and veterinary importance. Early in his scholarly path, Dr. Hou was captivated by the intricate biological interactions between parasites and their hosts. This foundational interest led him to explore immune-pathogenic mechanisms, particularly within the Chinese Type I T. gondii strains. His educational experiences laid the groundwork for advanced investigation into host-pathogen interactions, setting the stage for a future defined by high-impact research and molecular innovation.

💼 Professional Endeavors

Currently serving as an Associate Professor at Yangzhou University, Dr. Hou has consistently expanded the frontiers of research in parasitology and zoonotic diseases. His professional milestones include the successful leadership of six major scientific research projects, encompassing national, provincial, and institutional funding bodies. These include competitive grants from the National Natural Science Foundation of China, the Natural Science Foundation of Jiangsu Province, the China Postdoctoral Science Foundation, and several key laboratory open projects in zoonosis and infectious disease control. Each of these endeavors reflects his commitment to both scientific advancement and public health relevance.

Through his role, Dr. Hou not only supervises graduate-level research but also serves as a mentor for young scholars and medical researchers, fostering a new generation of scientists skilled in immunological and molecular techniques. His teaching methodology blends theoretical knowledge with applied research, nurturing a holistic understanding of disease mechanisms in his students.

🧬 Contributions and Research Focus

Dr. Hou’s work is distinguished by its precise focus on the molecular and immune mechanisms underlying Toxoplasma gondii infection. His cutting-edge studies delve into how this parasite manipulates host immunity and metabolism, particularly through the regulation of macrophage glycolytic feedback loops. Furthermore, his research extends to the intriguing overlap between toxoplasmic encephalitis and neurodegenerative disorders, aiming to uncover shared pathological mechanisms and design immune-metabolic interventions that can serve both domains.

Noteworthy contributions include the identification of key host microRNAs (miRNAs) that regulate immune response and damage during infection, transcriptomic profiling of macrophages in response to different T. gondii strains, and the characterization of strain-dependent activation of critical pathways such as the Hippo signaling cascade—leading to lung damage and apoptosis. He also conducted phosphoproteomic profiling in infected macrophages, identifying alterations involving A-Raf-related proteins, which may serve as biomarkers or therapeutic targets.

🏅 Accolades and Recognition

Dr. Hou’s work has garnered wide scholarly recognition. His publication record includes 35 peer-reviewed journal articles, many indexed in SCI and Scopus, reflecting his active engagement with the global research community. Additionally, he has contributed a textbook with an ISBN (978-7-5576-8031-2), further establishing his academic authorship. His involvement in multiple editorial boards and collaborative research across institutions highlights his growing influence as a thought leader in infectious disease research.

Furthermore, Dr. Hou’s projects have been recognized for their epidemiological significance, particularly in identifying virulent genotypes of T. gondii in humans, pigs, and cats in Eastern China. His collaborative studies have added to the understanding of zoonotic transmission patterns, which is critical for both animal and public health sectors.

🌍 Impact and Influence

Beyond academic circles, Dr. Hou’s research holds practical implications for public health policy and veterinary medicine. His studies contribute directly to infection control strategies, vaccine development, and targeted immune therapies. By uncovering the cellular and molecular intricacies of host-pathogen dynamics, his findings help shape how we understand and respond to zoonotic threats. He has also played a significant role in training students and research professionals, helping bridge the gap between basic science and translational research.

🌟 Legacy and Future Contributions

As Dr. Zhaofeng Hou looks toward the future, his legacy is poised to expand through continued cross-disciplinary collaborations, enhanced by international cooperation. His aspiration to decode the shared mechanisms between parasitic infections and chronic neurodegeneration suggests a broader, integrative research vision. By developing novel biomarkers and therapeutic pathways, Dr. Hou aims to advance precision medicine strategies for complex infectious and neurological diseases.

In the coming years, he plans to deepen his research through expanded use of omics technologies, AI-assisted bioinformatics, and clinical modeling, thereby contributing solutions that are both innovative and globally relevant.

📝Notable Publications

Prof. Yonglin Chen| Innovative Leadership | Best Research Article Award

Prof. Yonglin Chen| Innovative Leadership | Best Research Article Award

Anhui Jianzhu University, China

Author Profile

Scopus

🌱 Early Academic Pursuits

Chen Yonglin’s academic journey began with a Bachelor of Engineering in Mechanical Design, Manufacturing, and Automation from Shenyang Ligong University (2011–2015). His foundational studies in mechanical engineering equipped him with a robust understanding of design principles and industrial automation. He further pursued a Master’s degree in Mechanical Engineering from Inner Mongolia University of Technology (2015–2018), where he was recognized as an Outstanding Student Cadre, highlighting his leadership potential.

🌐 Professional Endeavors

Chen Yonglin embarked on his professional journey as a Junior Researcher at the Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (2018–2020). During this period, he contributed to combustion performance detection projects in collaboration with China Tobacco, where he developed algorithms for image segmentation and key target detection in complex environments. His expertise in computer vision and algorithm design laid the foundation for his transition to a research-focused career.

In 2023, Chen Yonglin joined Anhui University as a Teaching and Research Faculty in the School of Electronics and Information Engineering. Here, he engages in teaching Python and artificial intelligence while conducting cutting-edge research in these fields.

🔬 Contributions and Research Focus

Chen’s research is primarily centered on artificial intelligence, medical imaging, and disease prediction. His notable contributions include a contrastive learning framework for Alzheimer’s disease classification using brain 18F-FDG PET (published in IEEE Journal of Biomedical and Health Informatics, JCR Q1, IF:7.7) and a multi-feature fusion model for Alzheimer’s prediction using EEG signals (Frontiers in Neuroscience, JCR Q2, IF:4.3). His ongoing work on multi-feature fusion learning for Alzheimer’s prediction using PET images is under review at IEEE Transactions on Medical Imaging (JCR Q1, IF:10.6).

🏆 Accolades and Recognition

Chen’s excellence has been recognized through several prestigious awards, including:

  • 🥈 1st Runner-up in the Huawei Cloud PRCV Alzheimer’s Disease Classification Challenge (2021, National Level).
  • 🥉 2nd and 3rd Prizes in the China Graduate Electronics Design Competition (North China Division, 2017 and 2018).
  • 🎖️ Award from iFLYTEK Co., Ltd. (2024).

🌟 Impact and Influence

Beyond his research, Chen has served as a reviewer for high-impact journals such as Computers in Biology and Medicine, Physics in Medicine and Biology, and Scientific Reports. His role as an organizer and judge for the Disease Prediction Challenge (2020–Present) demonstrates his commitment to advancing medical AI research. The challenge, in partnership with iFLYTEK, has drawn over 2,000 teams (10,000+ participants) from institutions such as USTC, UESTC, and JDAI.

🚀 Legacy and Future Contributions

As Chen Yonglin continues his academic and research journey, his work in artificial intelligence and medical imaging is expected to make significant contributions to early disease detection and diagnosis. With his proven expertise and leadership in medical AI, he is poised to further influence the field, driving innovations that can enhance healthcare outcomes globally.”)}

📝Notable Publications

An annotated heterogeneous ultrasound database

Authors: Yuezhe Yang, Yonglin Chen, Xingbo Dong, Zhe Jin, Yong Dai

Journal: Scientific Data

Year: 2025

Mr. Guangyao Li | adsorption | Best Researcher Award

Mr. Guangyao Li | adsorption | Best Researcher Award

kyushu university, Japan

Author Profile

Scopus

🌱 Early Academic Pursuits

Lee Kuan Yew’s journey in academia began with a strong foundation in engineering, a field that combines creativity, problem-solving, and technical knowledge. Hailing from Xinxiang, Henan, he pursued his undergraduate studies at Henan Polytechnic University, where he earned a Bachelor of Engineering in Mechanical Design. His education in this institution laid the groundwork for his understanding of core mechanical concepts, including Engineering Thermodynamics, Mechanical Design, and Automation Technology. These formative years instilled in him a profound appreciation for the principles of mechanics and thermodynamics, which would later become central to his research.

Driven by an unrelenting desire for advanced knowledge, Lee Kuan Yew furthered his studies at Zhengzhou University, a prestigious Double First-Class institution, where he earned a Master of Engineering in Power Engineering. His curriculum covered a wide range of subjects, from Advanced Heat Transfer and Fluid Mechanics to Numerical Analysis and Industrial Energy Management. These courses equipped him with both theoretical insights and practical skills, making him proficient in the nuances of energy systems. His academic prowess and enthusiasm for research led him to pursue a Ph.D. in Mechanical and System Engineering at Kyushu University in Japan, sponsored by the China Scholarship Council (CSC). At this renowned institution, he delved into complex topics like Thermal Energy Utilization Systems and Numerical Fluid Mechanics, honing his expertise in thermal engineering.

🚀 Professional Endeavors

Lee Kuan Yew’s professional journey has been marked by diverse and impactful experiences. Since 2022, he has been actively involved in the development of adsorption refrigeration and heat pump systems at Mitsubishi Electric Corporation. His role has been pivotal in designing and constructing a fixed-volume adsorption isotherm measurement device and analyzing the adsorption characteristics of materials for refrigerants like R245fa. This work not only refined his technical skills but also positioned him at the forefront of sustainable energy technology.

His expertise in adsorption technology further extended to collaborative research with ENEOS from 2022 to 2024, where he investigated the absorption characteristics of novel compressor oils and refrigerants under varying pressures and temperatures. His meticulous data collection and analysis contributed significantly to the development of advanced energy systems.

Lee Kuan Yew also played a critical role in a groundbreaking project with NEDO, focusing on carbon dioxide capture, storage, and utilization. Here, he developed a CO₂ absorption characteristic measurement device and formulated a mathematical model to analyze the absorption behavior of CO₂ using an amino + ether phase change solution. This work underscored his commitment to tackling global environmental challenges.

🔬 Contributions and Research Focus

Throughout his career, Lee Kuan Yew has made substantial contributions to the field of thermal energy and environmental technology. His research primarily revolves around adsorption heat pumps, absorption technology, and carbon capture. Notably, he has been involved in the development of high-performance adsorbents derived from biomass for carbon capture, merging experimental work with molecular simulations to optimize efficiency.

His research on adsorption heat pumps, including the development of a metal roller anti-stick coating for industrial applications, has showcased his ability to bridge theory with practice. Moreover, his work on fly ash-based zeolite synthesis, funded by the Henan Provincial Department of Science and Technology, demonstrated his dedication to sustainable material development.

Lee Kuan Yew has also authored several academic publications, including a paper on “Superhydrophobic Surface-modified Zeolite to Regulate the Migration of Nonadsorbed Liquid Water in an Open-loop Adsorption Heat Pump,” published in Applied Thermal Engineering. His other work on “Performance Improvement of Waste Heat Upgrading Adsorption Heat Pump by Employing Copper Oxide-Loaded Composite Zeolites for High-Temperature Steam Generation” is currently under review, further highlighting his ongoing commitment to advancing thermal engineering.

🏆 Accolades and Recognition

Lee Kuan Yew’s dedication to excellence has earned him numerous awards and recognitions. In 2021, he was honored as an Excellent Volunteer for Flood Control by the Henan Provincial Civilization Committee, a testament to his sense of responsibility and commitment to community welfare. During the COVID-19 pandemic, he received a Commendation for Fighting the Epidemic from the Communist Youth League of Xinxiang Municipal Committee, recognizing his willingness to serve during challenging times.

His academic excellence has also been acknowledged through scholarships awarded by the Henan Provincial Department of Education (2019-2022) and a Third Prize at the Zhengzhou University Graduate Innovation Competition in 2021. These honors not only reflect his intellectual abilities but also his perseverance and dedication.

🌐 Impact and Influence

Lee Kuan Yew’s work has had a profound impact on the field of thermal energy, particularly in the development of sustainable energy solutions. His research on adsorption heat pumps and carbon capture has the potential to revolutionize energy systems, making them more efficient and environmentally friendly. His active participation in industrial projects with Mitsubishi Electric Corporation and ENEOS has enabled him to bridge the gap between theoretical research and practical applications, creating technologies that can directly benefit society.

Moreover, his academic publications have enriched the scientific community’s understanding of adsorption and absorption processes, providing a foundation for future research in the field. His expertise in computational tools such as Material Studio, CAD, SolidWorks, and Comsol further enhances his ability to drive innovation.

🌟 Legacy and Future Contributions

As a young scholar and engineer with a passion for sustainability, Lee Kuan Yew’s journey is far from over. His continuous pursuit of excellence in research and his ability to translate complex scientific concepts into real-world solutions position him as a promising leader in the field of thermal energy. Moving forward, he aims to explore new frontiers in energy conversion and environmental technology, contributing to a greener, more sustainable world.

📝Notable Publications

Performance Improvement of Waste Heat Upgrading Adsorption Heat Pump by Employing Copper Oxide-Loaded Composite Zeolites for High-Temperature Steam Generation

Authors: G. Li (Guangyao), B. Xue (Bing), H. Yu (Hao), K. Thu (Kyaw), T. Miyazaki (Takahiko)
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year: 2025

Dr. Sergei Badulin | Innovative Leadership | Best Researcher Award

Dr. Sergei Badulin | Innovative Leadership | Best Researcher Award

P.P.Shirshov Institute of Oceanology, Russia

Author Profile

Orcid

🎓 Early Academic Pursuits

Sergei I. Badulin’s academic journey began at the prestigious Moscow Institute of Physics and Technology (MIPT), one of the leading institutions in Russia for physics and engineering. He pursued his Master’s in Science (MSc) in Aerophysics and Space Research from 1976 to 1982, earning an Honours Degree with a focus on aero- and thermodynamics. His interest in wave dynamics, particularly in oceanographic contexts, became evident during this period. 🌊✨

Following his undergraduate studies, Badulin continued at MIPT for his PhD in Physics and Mathematics from 1983 to 1985. His doctoral thesis, titled “Transformation of Internal Waves in Inhomogeneities of Hydrological Fields of Ocean,” laid the foundation for his extensive research in ocean wave dynamics. 🌐📊 In 2009, Badulin achieved his Doctor of Science (D.Sc.) degree, with a thesis on “Dynamics of Surface and Internal Gravity Waves for the Problem of Monitoring and Forecasting Sea Waves.” This advancement solidified his reputation as a leading figure in wave dynamics research. 📚🏅

🚀 Professional Endeavors

Badulin’s professional journey is marked by his long-standing association with the P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences. His career at this renowned institution began in 1985 and has spanned various roles, including Junior Researcher, Researcher, Senior Researcher, Leading Researcher, and currently, Head of the Nonlinear Wave Processes Laboratory. 🌐🔬

His expertise was further recognized with positions at other prestigious institutions, including the P.N. Lebedev Physical Institute and Novosibirsk State University. From 2019 onwards, he has served as a Senior Research Scientist at the Center for Advanced Studies, Skolkovo Institute of Science and Technology, a leading hub for cutting-edge research in Russia. 🚀🌏

📊 Contributions and Research Focus

Sergei Badulin’s research has primarily focused on the dynamics of ocean waves, both surface and internal, with significant contributions to the understanding of nonlinear wave processes. His work on the transformation of internal waves in varying hydrological conditions has been instrumental in advancing the field of oceanography. 🌊📈

He has been a pioneer in studying the monitoring and forecasting of sea waves, combining theoretical insights with practical applications. His research has implications for climate modeling, maritime safety, and understanding the complex behavior of wave systems in the world’s oceans. 🌐🌦️

🏆 Accolades and Recognition

Over his distinguished career, Sergei Badulin has been widely recognized for his contributions to oceanography and wave dynamics. His scientific excellence has been acknowledged through his leadership roles, including his current position as Head of the Nonlinear Wave Processes Laboratory at the Shirshov Institute of Oceanology. 🌟🥇

🌐 Impact and Influence

Badulin’s work has had a profound impact on the field of oceanography. His research findings are not only of academic significance but also have practical applications in areas such as maritime safety, climate research, and environmental monitoring. 🌏🌊 His role as a mentor to younger scientists has further extended his influence in the field.

🌱 Legacy and Future Contributions

Looking ahead, Sergei I. Badulin’s work continues to shape the understanding of wave dynamics in oceanography. His leadership at the Nonlinear Wave Processes Laboratory and his ongoing research at Skolkovo Institute of Science and Technology ensure that his insights and expertise will continue to benefit the scientific community. 🌐🌟

📝Notable Publications

The Caspian Sea as a full-scale experimental facility supported by altimetry measurements of wind-driven waves

Author: Sergei I. Badulin
Journal: Dynamics of Atmospheres and Oceans
Year: 2025
DOI: 10.1016/j.dynatmoce.2025.101554

Ship waves on an elastic floating ice plate

Author: Sergei I. Badulin
Journal: Physical Review Fluids
Year: 2025
DOI: 10.1103/PhysRevFluids.10.034801

 Deep Water Waves from Oscillating Elliptic Source

Author: Sergei I. Badulin
Journal: Water Waves
Year: 2023
DOI: 10.1007/s42286-023-00080-0

 Wave Buoy Measurements at Short Fetches in the Black Sea Nearshore: Mixed Sea and Energy Fluxes

Author: Sergei I. Badulin
Journal: Water
Year: 2023
DOI: 10.3390/w15101834

Global Validation of SWIM/CFOSAT Wind Waves Against Voluntary Observing Ship Data

Author: Sergei I. Badulin
Journal: Earth and Space Science
Year: 2022